
UNIVERSITÀ DEGLI STUDI DI TRIESTE
DIPARTIMENTO DI MATEMATICA E GEOSCIENZE

Corso di Laurea Magistrale in Data Science and Scientific Computing

Interpreting Neural Language Models
for Linguistic Complexity Assessment

Tesi di Laurea Magistrale

Relatore
Prof. Davide Crepaldi

Candidato
Gabriele Sarti

Correlatore
Dott. Felice Dell’Orletta

Anno Accademico 2019 - 2020





Acknowledgements

The majority of the following work was carried out during the COVID-19 pandemic, an
incredibly hard time for our global society as a whole. For this reason, I would like to
begin by acknowledging my great privilege in being able to entirely devote my past year’s
efforts to complete this research work without having to worry about me and my family’s
health and sustenance.

This thesis would not have been possible without the support of many people, and especially
without the help and guidance of my supervisors. Davide and Felice, I would like to thank you
with all my heart for being incredibly supportive despite the adverse circumstances and always
making me feel a valued part of your labs and your research activities.

I would also like to acknowledge the dedication of professors and fellow students at the
master’s degree in Data Science and Scientific Computing in creating an environment that is
at the same time pleasantly familiar and incredibly stimulating. I could not have asked for a
better company during those two years. A special mention to the friends of Cacaopoli for the
amazing moments passed together, and to my AI Student Society colleagues for believing in
my dream of creating an AI student community in Trieste, and for selflessly bringing it to life
to the benefit of future cohorts of students in AI and Data Science.

On the research side, I would like to sincerely thank all the members of the ItaliaNLP Lab
in Pisa, who welcomed me in their group for my internship in 2019, first introduced me to
natural language processing research, and ultimately motivated me in pursuing a doctorate
after the end of this master’s degree. My thanks also go to Prof. Elizabeth Schotter for her
excellent introductory course to eye-tracking practices in cognitive science that immensely
helped me to develop fundamental intuitions about gaze movements during reading, and to
Dr. Nora Hollenstein for her precious advice on using gaze metrics in NLP studies.

I cannot be more thankful for the support of my close friends, which made these difficult
times bearable for me. A special thanks to Laura, Karen, Alice, and Mattia, with whom
I felt close even when we were physically far, and to Vale, for being the best thing this
pandemic has brought in my life.

In conclusion, I am truly grateful to my parents and my family for always conciliating
hard work with kindness, supporting me at all times, and always making me strive for the
best. I aspire to be like you one day.



Abstract

Lo studio della complessità linguistica è un ambito profondamente multidisciplinare, che spazia
dallo studio dell’elaborazione cognitiva in lettori umani alla classificazione della complessità
strutturale caratterizzante espressioni in linguaggio naturale. In tempi recenti, l’utilizzo di metodi
computazionali per il trattamento e l’analisi del linguaggio ha prodotto importanti sviluppi nella
comprensione di molteplici fenomeni associati alla complessità linguistica. In linea con lo
stato dell’arte del settore, questa tesi presenta uno studio model-driven di molteplici fenomeni
associati alla complessità linguistica. In primo luogo, vengono esplorate empiricamente le
relazioni che sussistono tra varie metriche estrinseche di complessità – percezione di complessità
linguistica, leggibilità, elaborazione cognitiva e prevedibilità – evidenziando similitudini e
differenze da una prospettiva linguisticamente e cognitivamente motivata. In seguito, viene
studiato come l’informazione alla base delle diverse metriche di complessità possa essere
acquisita da modelli del linguaggio basati su reti neurali, a vari livelli di astrazione e granularità,
applicando tecniche di interpretabilità derivate dalla letteratura sull’elaborazione del linguaggio
naturale. In conclusione, viene valutata la capacità di vari modelli computazionali di complessità
nel prevedere difficoltà di elaborazione cognitiva associate a costrutti sintattici atipici, quali le
garden-path sentences. I risultati sperimentali di questo studio forniscono prove convergenti
riguardo alle limitate capacità di astrazione e generalizzazione dei modelli di linguaggio neurali
allo stato dell’arte per la previsione della complessità linguistica, e incoraggiano all’adozione
di linee di ricerca che integrino informazione simbolica e interpretabile in questo settore. In
un’ottica di riproducibilità, il codice utilizzato per gli esperimenti viene reso disponibile al
seguente indirizzo: https://github.com/gsarti/interpreting-complexity

https://github.com/gsarti/interpreting-complexity
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Introduction

The study of complexity in language production and comprehension is a multidisciplinary field

encompassing approaches that range from the analysis of cognitive processing phenomena in

human subjects to the classification of structural complexity in natural language utterances.

Because of its inherently faceted nature, linguistic complexity still defies a univocal definition

and depends heavily on the point of view adopted during experimental inquiries. In recent

years, as a consequence of the astounding expansion in human technological capabilities, the

scientific community witnessed a proliferation of studies leveraging computational methods

to investigate different complexity perspectives and develop automatic systems for linguistic

complexity assessment. The introduction of neural network models able to automatically learn

hierarchical representations of language spurred new lines of research in the field of Natural

Language Processing, with researchers aiming to reverse-engineer theoretical intuitions by

interpreting results and learning mechanics of those models. Nowadays, deep computational

models are routinely adopted to study and evaluate linguistic complexity in applicative settings

such as readability assessment, simplification, and first/second language learning.

This thesis fits into this current line of research by pursuing a two-fold aim. On the one

hand, it investigates the connection between multiple human-centric perspectives of linguistic

complexity – perception of complexity, readability, cognitive processing, and predictability –

highlighting similarities and differences between them from a linguistically and cognitively-

motivated viewpoint. On the other hand, it studies how those perspectives are learned by

deep learning models at various levels of granularity. This work’s primary focus concerns the

analysis of learned representations using multiple interpretability techniques derived from the

natural language processing (NLP) literature and the study of abstraction and generalization

capabilities of modern computational models of language. A model-driven approach is adopted

throughout this study, following the intuition that learned representations can be leveraged as

proxies of the informational content required to perform linguistic complexity assessment. The

modeling of linguistic complexity is studied on multiple extensively-used corpora spanning three

complexity-related tasks – perceived complexity prediction, automatic readability assessment,

and gaze metrics prediction – and further validated on ad-hoc psycholinguistic test suites. To

further validate the impact of structural factors for complexity assessment, neural network-based

annotation pipelines are notably employed alongside neural language models as black-box

feature extraction systems.
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Introduction 2

Chapter 1 marks the beginning of this work by introducing the reader to the multiple facets

of linguistic complexity. It starts with a broad categorization of complexity measurements into

a spectrum taking into account both the perspective of analysis (intrinsic or extrinsic) and the

processing modalities (online or offline). Relevant intrinsic perspectives related to linguistic

complexity are then briefly presented, focusing on the extraction and use of morphosyntactic

structures in complexity studies and the use of information-theoretic surprisal from language

models as a structural measure of complexity. The three extrinsic complexity tasks representing

this study’s focus and their respective corpora are introduced in detail, focusing on their

differences both from a conceptual and a data collection perspective. The chapter ends with an

introduction to garden-path sentences, peculiar syntactic constructs associated with cognitive

processing difficulties, later employed in the experiments of Chapter 5.

Chapter 2 motivates the choice of NLMs as the critical component in our experimental

analysis: their ability to encode both semantic and structural properties of language makes them

especially suitable in the context of linguistic complexity modeling. After a summary of the

ascent of NLMs in the field of NLP, the two neural language models used in experimental sections

are presented in detail. To conclude, three interpretability approaches are used to leverage learned

representations to study complexity learning across tasks, and abstraction layers are presented.

Chapter 3 is the first experimental section, in which perceived complexity annotations and eye-

tracking metrics collected at sentence level are linked to various linguistic phenomena extracted

by a linguistic parser. The same analysis is also performed by controlling sentence length to limit

the disproportionate influence of length-related features on complexity measures. The predictive

performances of NLMs are then evaluated on perceived complexity and various eye-tracking

metrics for both length-controlled and unconditional settings. The chapter ends with probing task

experiments highlighting how complexity-related linguistic properties become implicitly encoded

in model representations after complexity learning, suggesting interesting perspectives in priming

models with syntactic information to improve their performances on complexity-related tasks.

Chapter 4 builds upon previous chapters’ intuitions to compare the contextual embeddings

generated from a single corpus by multiple models trained on the different complexity-related

tasks. First, a set of assumptions is formulated to guide the empirical evaluation of how

models encode complexity properties after fine-tuning. Similarity scores are then computed

layer-wise across language models using two interpretability approaches to evaluate whether

the information shared across different complexity perspectives is encoded by models with

different fine-tuning objectives. Finally, learned representations are compared across model

layers and fine-tuning tasks to highlight whether and how fine-tuning objectives influence the

abstraction hierarchy learned by language models.



Introduction 3

Chapter 5 concludes the experimental portion of this work by studying the connection
between eye-tracking metrics and language modeling surprisal and investigating whether gaze
metrics fine-tuning can enable language models to individuate cognitive processing triggers
like garden-path sentences. A data-driven strategy is first adopted to establish a conversion
coefficient between surprisal units and reading times. This coefficient is then used to evaluate
whether a model that correctly highlights increased cognitive processing in specific constructions
can also predict the magnitude of such phenomena. Autoregressive and masked language
models are fine-tuned on eye-tracking measurements and then leveraged in a zero-shot setting to
evaluate their ability in replicating garden-path effects in a controlled setting. Finally, models’
performances are evaluated on a set of psycholinguistic benchmarks using surprisal and gaze
recordings predictions to estimate the presence and magnitude of garden-path effects.

While studies on natural language complexity usually adopt a cross-lingual perspective,
either by performing typological comparisons across language families or studying the impact of
interlingual contacts on complexity changes, this work focuses solely on analyzing complexity
annotations produced by native speakers of English. The English language was selected due to the
broad availability of open-source corpora and resources, and no other languages were included in
the study to keep it as self-contained as possible. Readers should be aware that English is widely
considered morphologically and inflectionally poor despite its ubiquity in language studies, even
compared to its Indo-European siblings. It should thus be avoided to generalize the results of
this thesis work to other language families and typologies.1 Moreover, this study focuses on the
written language paradigm, but the importance of phonological phenomena in spoken language
in evaluating language complexity is acknowledged (McWhorter, 2001).

This thesis work should be regarded as a broad, high-level exploration of multiple linguistic
complexity perspectives employing modern computational approaches. In this sense, both
introductory and experimental chapters are not intended to be exhaustive in providing a complete
overview of the discussed topics. Instead, they aim to provide the minimal context needed to
interpret experimental results correctly. Introductory chapters include pointers to additional
resources discussing linguistic complexity for curious readers, and future studies on these topics
will likely encompass any other perspective that was not covered by the present work.

1See Ruder (2020) for the importance of multilingual studies in NLP.



Both simple and complex types of language of an indefinite number of
varieties may be found spoken at any desired level of cultural advance.
When it comes to linguistic form, Plato walks with the Macedonian
swineherd, Confucius with the head-hunting savage of Assam.

— Edward Sapir (1921), Language

1 | Linguistic Complexity

Defining linguistic complexity in a univocal way is challenging, despite the subjective intuition
that every individual may have about what should be deemed complex in written or spoken
language. Indeed, if the faculty of language allows us to produce a possibly infinite set of
sentences from a finite vocabulary, there are infinitely many ways in which a sentence may
appear difficult to a reader’s eyes. An accurate definition is still debated in research fields
like cognitive science, psycholinguistics, and computational linguistics. Nonetheless, it is
indisputable that the concept of natural language complexity is closely related to difficulties
in knowledge acquisition. This property stands both for human language learners and for
computational models learning the distributional behavior of words in a corpus.

This introductory chapter begins with a categorization of linguistic complexity annotations
following taxonomical definitions found in the literature. Various complexity metrics are then
introduced alongside corpora and resources that were used throughout this study. Finally,
the focus will be put on garden-path sentences, peculiar syntactically-ambiguous constructs
studied in the experiments of Chapter 5.

1.1 Categorizing Linguistic Complexity Measures

In modern literature about linguistic complexity, two positions, each trying to define the nature
of linguistic complexity phenomena, can be identified. In Kusters (2008) words:

On the one hand, complexity is used as a theory-internal concept, or linguistic tool,
that refers only indirectly, by way of the theory, to language reality. On the other
hand, complexity is defined as an empirical phenomenon, not part of, but to be
explained by a theory.

These definitions are coherent with the absolute and relative complexity terminology coined
by Miestamo (2004), where relative complexity is seen as a factor characterizing the perceptual
experience of specific language users. In contrast, absolute complexity is structurally-defined
by language constructs and independent from user evaluation. While these two perspectives

4



1. Linguistic Complexity 5

seem to identify two opposite viewpoints over linguistic complexity, the distinction between the

two becomes blurred when we consider that linguistic theories underlying absolute complexity

evaluation are developed by linguists, who still have a subjective perspective despite their

competence (Kusters, 2003). Two definitions are now introduced to operationalize absolute and

relative complexity in the context of complexity measurements:

Intrinsic Perspective The intrinsic perspective on linguistic complexity is closely related

to the notion of absolute complexity. From the intrinsic viewpoint, language productions are

evaluated using their distributional and structural properties, without any complexity annotation

derived by language users. The linguistic system is characterized by a set of elementary

components (lexicon, morphology, syntax inter alia) that interact hierarchically (Cangelosi

et al., 2002), and their interactions can be measured in terms of complexity by fixing a set

of rules and descriptions. The focus is on objectivity and automatic evaluation based on the

intrinsic properties of language systems.

Extrinsic Perspective The extrinsic perspective connects to the concept of relative complexity

and takes into account the individual perspective of users. Complexity judgments are collected

during or after the processing of linguistic productions and are then evaluated in terms of

cognitive effort required by language users for comprehension. The extrinsic viewpoint is

partaken by cognitive processing theories in psycholinguistics such as the Dependency Locality

Theory (Gibson, 1998; Gibson, 2000), the Surprisal Theory (Hale, 2001; Hale, 2016; Levy,

2008), and the more recent Lossy-context Surprisal Theory (Futrell, Gibson, et al., 2020), aiming

to disentangle the source of processing difficulties in sentence comprehension. The focus, in

this case, is on the subjectivity of language users and their judgments.

Despite being different under many aspects, the two perspectives are highly interdependent:

a user’s perception of complexity will be strongly influenced by the distributional and structural

properties of utterances, and some of those properties will be considered complex in relation to

the type of judgments they typically elicit in language users. Provided that the strength of human

influence in complexity measurements can vary widely depending on data collection procedures,

the two perspectives can be seen as the two ends of a spectrum. A visual representation is

provided by the horizontal axis of the complexity measures compass in Figure 1.1.

An additional dimension for categorizing linguistic complexity metrics can be introduced

by considering the time at which measures are obtained, relative to the incremental processing

paradigm that characterizes natural reading in human subjects. In this context, processing

is defined as any act aimed at extracting information from linguistic forms and structures,

either by employing reasoning (in humans) or through computation (in automatic systems).
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Figure 1.1: Complexity measures’ compass.

Again, we can identify the two ends of a spectrum concerning processing modalities, related to

the concepts of local and global complexity found in linguistic literature (Edmonds, 1999;

Miestamo, 2004; Miestamo, 2008):

Online processing Online complexity judgments are collected while a language user, be it a

human subject or a computational system, is sequentially processing a text. Online processing is

widely explored in the cognitive science literature, where behavioral metrics such are fMRI data

and gaze recordings are collected from subjects exposed to locally and temporally-immediate

inputs and tasks that require fast processing (Iverson et al., 1999). The act of reading is

predominantly performed by online cognition (Meyer et al., 1992), making online measures

especially suitable for complexity evaluation for natural reading.

Offline processing Offline complexity judgments are collected at a later time when the lan-

guage user has a complete and contextual view of the text in its entirety. Again, offline complexity
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is related to the offline cognition paradigm (Day, 2004) typically used in re-evaluations and

future planning. In practice, offline evaluation accounts for contextual and cultural factors closely

related to individual subjectivity and is poorly captured by immediate online metrics.

Figure 1.1 situates various linguistic complexity metrics in terms of processing modalities

and analyzed perspective by including the processing spectrum on the vertical axis. In the

next sections, all these measures will be introduced and their use will be motivated in light

of this categorization.

1.2 Intrinsic Perspective

Complexity studies where the intrinsic point of view is adopted rely on annotations describing

linguistic phenomena and structures in sentences and aim to map those to complexity levels

or ratings, often resorting to formulas parametrized through empirical observation. Given

the scarcity of experienced human annotators and the cost of a manual annotation process,

computational systems have been primarily employed to extract linguistic information from

raw text in an automated yet precise way.

Another intrinsic viewpoint is based on the intuition that frequent constructs should be

deemed as less complex than infrequent ones. In this case, terms’ co-occurrences are extracted

from large corpora, and complexity judgments are derived from their probabilistic likelihood

of appearance in a given context. Given the infeasibility of tracking co-occurrences for long

sequences in large, typologically-varied corpora, computational language models are usually

employed to learn approximations of co-occurrence likelihoods for specific constructs.

While this thesis work only partially addresses the use of these approaches, they will be

briefly introduced to provide additional context for understanding extrinsic perspectives and

their experimental evaluation.

1.2.1 Structural Linguistic Complexity

Language systems can be seen as hierarchies of rules and processes governing various aspects of

utterances production and use. For each of those levels, it is possible to identify characteristics

leading to higher complexity from a structural standpoint (Sinnemäki, 2011):

• A greater number of parts in a specific language level leads to a greater syntagmatic
complexity (also known as constitutional complexity). This mode is related to the lexical

and “superficial” properties of language, such as the length of words and sentences.
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• A greater variety of parts in a specific language level leads to a greater paradigmatic
complexity (also known as taxonomic complexity). This mode characterizes, in particular,

the phonological level, where the presence of an elaborated tonal system makes a language

more complex (McWhorter, 2001), the morphologic level, where inflectional morphology

is usually associated to a higher degree of complexity (McWhorter, 2001; Kusters, 2003)

when compared to the regularity of derivational rules, and the semantic level, where

polysemic words are generally considered more complex than monosemic ones (Voghera,

2001).

• A greater variety of interrelation modalities and hierarchical structures leads to greater or-
ganizational and hierarchical complexities. Those complexity modes are mainly related

to the syntactic level, where recursive and nested constructs are deemed more complex

and possibly determinant in distinguishing human language from animal communication

(Hauser et al., 2002).

Focusing on the syntactic level, we can find multiple factors accounting for greater complexity

(Berruto et al., 2011):

• Subordinate clauses preceding the main clause, as in If you need help, let me know" as

opposed to “Let me know if you need help”.

• Presence of long-range syntactic dependencies between non-contiguous elements, as in

“The dog that the cat chased for days ran away” where the subject referent (dog) and its

verb (ran) are far apart in the sentence.

• A high degree of nesting between elements and substructures, as in “The mouse that
the cat that the dog bit ate was bought at the fair” where two nested subordinate clauses

introduced by the preposition that are present.

• Repeated applications of recursive principles to build utterances with different meanings

through the compositionality principle, as in “I am a huge fan of fans of fans of . . . of

recursion”, where the number of recursions defines the final meaning of the sentence.

While all those properties are relevant when evaluating an utterance’s complexity, only some

can be easily extracted from corpora using automatic approaches. In the specific context of this

work, the analysis of complexity-related features in Chapter 3 makes use of the Profiling–UD tool1

(Brunato, Cimino, et al., 2020), implementing a two-stage process: first, the linguistic annotation

process is automatically performed by UDPipe (Straka et al., 2016), a multilingual pipeline

1Available at http://linguistic-profiling.italianlp.it

http://linguistic-profiling.italianlp.it


1. Linguistic Complexity 9

leveraging neural parsers and taggers included in the Universal Dependencies initiative (Nivre
et al., 2016). During this step, sentences are tokenized, lemmatized, POS-tagged (i.e., words are
assigned lexical categories such as “Noun” and “Verb”) and parsed (i.e., the hierarchical structure
of syntactic dependencies is inferred). Then, a set of about 130 linguistic features representing
underlying linguistic properties of sentences is extracted from various levels of annotation. Those
features account for multiple morphological, syntactic, and “superficial” properties related to
linguistic complexity. A relevant subset of those features is presented in detail in Appendix A.

After deriving linguistic properties from sentences, either automatically as in this study or by
manual annotations, two approaches are viable to determine their complexity while maintaining
an intrinsic perspective (no human processing data involved):

Formula-based Approach This approach treats linguistic properties of input texts as com-
ponents of a formula used to determine levels or readability grades. Traditional readability
formulas consider multiple factors, such as word length, sentence length, and word frequency.
Parameters in those formulas are carefully hand-tuned to match human intuition and correlate
well with human-graded readability levels.2

Learning-based Approach This approach casts the complexity prediction problem in the
supervised machine learning framework. More specifically, linguistic parsers are used to predict
linguistic properties, and their accuracy on a set of gold-labeled instances is taken as an indicator
of complexity. In the case of dependency parsers (i.e., models trained to extract the syntactic
structure of a sentence), two evaluation metrics can be used: the Unlabeled and Labeled

Attachment Scores (UAS and LAS), where the UAS is the percentage of words assigned to the
right dependency head and LAS also consider if the dependency relation was labeled correctly.

Both approaches are represented in Figure 1.1 under the label “Property-based Automatic
LCA” and are considered offline since the text is generally not processed incrementally but
instead taken as a whole.

1.2.2 Language Modeling Surprisal

The information-theoretic concept of surprisal, also known as information content of an event,
can be seen as a quantification of the level of surprise caused by a specific outcome: an event
that is certain yields no information, while the less probable an event is, the more surprising
it gets. Formally, an event x with probability p(x) has a surprisal value equal to:

I(x) =− log[p(x)] (1.1)

2This motivates the previous claim about the interdependence of intrinsic and extrinsic approaches. See Section
2.1 of Martinc et al. (2019) for an overview of the most popular metrics for English.
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The idea that probabilistic expectations in the context of language reading are related to

greater complexity in terms of cognitive processing was formalized by surprisal theory (Hale,

2001; Hale, 2016). Surprisal theory defines processing difficulties D (which can be considered

as proxies of complexity) as directly proportional to the surprisal produced in readers by a word

w given its previous context c (i.e., preceding words in the sentence):

D(wi|c) ∝− log p(wi|c) =− log p(wi|wi−1,wi−2, . . . ,w0) (1.2)

While processing difficulties imply human subjects’ presence, language models (LM) can

be used to estimate the conceptually similar information-theoretic surprisal without the need of

human annotations by learning word occurrences and co-occurrences probabilities from large

quantities of text. Concretely, a language model is a probabilistic classifier that learns to predict

a probability distribution over words of a vocabulary V given a large number of contexts c

in which those words occur (Goodman, 2001):

p(wi|c) ∀ wi ∈V (1.3)

After the training procedure it is possible to estimate the probability p(s) of a sentence s

having length m as the product of the conditional probabilities assigned to individual words

by the language model, given its context:

p(s) = p(w1, . . . ,wm) =
m

∏
i=1

p(wi |c) (1.4)

We can consider the surprisal I(s) =− log p(s) as an intrinsic measure of linguistic complex-

ity since it is a function of the co-occurrence relations derived by the training corpora. Thus,

it describes how likely a construct can be observed in a structurally-sound manner, without

relying on human processing data. However, automatic surprisal estimation using language

models cannot be considered purely intrinsic since it is highly dependent on a multitude of

factors that are arguably “less objective” than the linguistic categories of the previous section,

such as the type and dimension of the considered context and the corpora employed by the

LM to learn words’ distributional behavior.

We can categorize modern language models in two broad categories: sequential models

(also known as autoregressive or causal LMs) consider as context only preceding words, while

bidirectional models (also known as masked LMs) consider both preceding and following words
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when estimating occurrence probabilities, much like the well-established cloze test (Taylor,

1953) in psycholinguistics. Equations (1.5) show how the sentence surprisal equation (1.4) is

adapted in both cases, using the product rule for logarithms:

Isequential(s) =−
m

∑
i=1

log p(wi |w1,w2, . . . ,wi−1)

Ibidirectional(s) =−
m

∑
i=1

log p(wi |w1, . . . ,wi−1,wi+1, . . . ,wm)

(1.5)

If the LM used to estimate surprisal was sequential, then surprisal estimation could be

considered part of the online processing paradigm despite the absence of a human subject.3 In

the bidirectional case, the estimation of surprisals from the whole context can be assimilated

with offline processing practices.

The relation between co-occurrence frequencies estimated by a language model and per-

ception of complexity is one of the aspects that make language models especially suitable for

predicting extrinsic complexity metrics, as it will be discussed in Chapter 2.

1.3 Extrinsic Perspective

Extrinsic complexity measures elicited from human-produced signals and annotations are the

main focus of this thesis work. In this section, three different viewpoints on linguistic complexity

assessment from a human perspective are introduced:

• The readability point-of-view, as intended in the context of the automatic readability

assessment (ARA) task, is concerned with collocating similar textual inputs into difficulty

levels that are often predetermined by writers and given a clear semantic interpretation

(e.g., easy, medium, hard).

• The perceptual point-of-view, represented by the perceived complexity prediction (PCP)

task, is based on human annotations of complexity on a numeric scale, taking into account

disparate textual inputs presented sequentially to obtain more generalizable complexity

annotations. Unlike ARA, PCP annotations are produced by readers after sentence

comprehension.

3This is an admittedly simplistic reduction, given the importance of parafoveal processing in reading (Schotter
et al., 2012; Schotter, 2018)
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• The cognitive point-of-view, employing cognitive signals collected by specialized machin-

ery (e.g., electrodes, MRI scanners, eye-trackers) as proxies for the linguistic complexity

experienced by users. In this work, the focus will be on the gaze metrics prediction task,

using gaze data collected from subjects during natural reading.

All three complexity-related tasks will be introduced alongside recent results in the literature.

The corpora on which each task relies upon will also be presented in their respective sections.

1.3.1 Automatic Readability Assessment

While the term readability assessment is often broadly employed to denote the task of predicting

the general reading difficulty of a text, here it is used to describe the typical approach in ARA,

relying on corpora categorized by the writer’s perception of what is difficult for readers.

We can take as an example the OneStopEnglish (OSE) corpus (Vajjala and Lučić, 2018),

which will be used later to study the ARA relation with other complexity tasks in Chapter 4.

OSE contains 567 weekly articles from The Guardian newspaper rewritten by language teachers

to suit three adult English learners’ levels. Each text can be divided into passages spanning

one or multiple sentences, each labeled with a readability level (“Elementary”, “Intermediate”

or “Advanced”) based on the original writers’ judgment. An example of the same passage at

different reading levels is provided in Table 1.1.

From Table 1.1 example, it is evident that the reading level of a specific text should be

interpreted only in relation to its other versions, i.e., elementary passages are not necessarily

straightforward in absolute terms, but rather less complicated than their intermediate and

advanced counterparts. This affirmation holds for the OSE corpus and other widely-used

readability corpora such as the Newsela corpus (Xu et al., 2015), which contains newspaper

articles rewritten by experts to match eleven school grade reading levels. For this reason, and

because of its writer-centric perspective relying only on readability judgments formulated by

the same writers who composed the passages, readability assessment is fundamentally different

from the other extrinsic approaches.4 ARA can be framed as a machine learning task in which

a computational model m is trained to predict the readability level y ∈ Y over a set of labeled

examples S = (s1,s2, . . . ,sn) in two possible ways:

• A simple multiclass classification setting, where the model predicts the level of a single

sentence s. In this case, the model outputs a prediction m(s) = ŷ ∈ Y . We can then

minimize the categorical cross-entropy H(y, ŷ) between gold and predicted labels during

the training process and evaluate the model’s performances with standard classification

4See Collins-Thompson (2014) for a thorough review of ARA approaches.
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Table 1.1: An OSE Corpus passage at different reading levels.

Reading Level Example

Advanced (Adv) Amsterdam still looks liberal to tourists, who were recently assured by
the Labour Mayor that the city’s marijuana-selling coffee shops would
stay open despite a new national law tackling drug tourism. But the
Dutch capital may lose its reputation for tolerance over plans to dispatch
nuisance neighbours to scum villages made from shipping containers.

Intermediate (Int) To tourists, Amsterdam still seems very liberal. Recently the city’s Mayor
assured them that the city’s marijuana-selling coffee shops would stay
open despite a new national law to prevent drug tourism. But the Dutch
capitals plans to send nuisance neighbours to scum villages made from
shipping containers may damage its reputation for tolerance.

Elementary (Ele) To tourists, Amsterdam still seems very liberal. Recently the city’s Mayor
told them that the coffee shops that sell marijuana would stay open,
although there is a new national law to stop drug tourism. But the Dutch
capital has a plan to send antisocial neighbours to scum villages made
from shipping containers, and so maybe now people wont think it is a
liberal city any more.

metrics such as precision and recall. This approach is similar to the ones used for other
extrinsic metrics but does not account for readability levels’ relative nature.

• A multiple-choice scenario, where the model is provided with two semantically equivalent
sentences s1,s2 at different readability levels (s1 ≡ s2,y1 6= y2) and needs to predict which
of the sentences has the highest readability level. In this case, which is more coherent with
the relative nature of readability judgments, the model is trained to minimize the binary
cross-entropy between gold and predicted labels y, ŷ ∈ Ybin = {0,1} corresponding to the
position of the more complex sentence in the pair.

Expert annotations’ effectiveness in determining readers’ comprehension was recently ques-
tioned, as automatic readability scoring did not show a significant correlation to comprehension
scores of participants, at least for the OSE Corpus (Vajjala and Lucic, 2019). However, measuring
if this observation holds for other corpora and extrinsic approaches is beyond this thesis’s scope.

1.3.2 Perceived Complexity Prediction

While ARA measures linguistic complexity in a context-relative and writer-centric sense,
the perceived complexity prediction (PCP) approach focuses on eliciting absolute complexity
judgments directly from target readers, aiming at evaluating difficulties in comprehension rather
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Table 1.2: Sample of sentences taken from the English portion of the Perceived Complexity (PC) Corpus
with complexity scores from crowdsourced annotators.

Sentence A1 A2 A3 ... A20

In other European markets, share prices closed sharply higher
in Frankfurt and Zurich and posted moderate rises in
Stockholm, Amsterdam and Milan.

4 6 7 ... 1

The pound strengthened to $ 1.5795 from $ 1.5765. 2 1 2 ... 1

In Connecticut, however, most state judges are appointed by the
governor and approved by the state legislature.

1 3 3 ... 5

When the market stabilized, he added, the firm sold the bonds
and quickly paid the loans back.

2 3 3 ... 3

Paribas already holds about 18.7 % of Navigation Mixte, and
the acquisition of the additional 48 % would cost it about 11
billion francs under its current bid.

5 2 3 ... 6

than production. This approach was pioneered by Brunato, De Mattei, et al. (2018), who

collected crowdsourced complexity ratings from native speakers for Italian and English sentences

and evaluated how different structural linguistic properties contribute to human complexity

perception. The use of annotators recruited on a crowdsourcing platform was intended to better

grasp the layman’s perspective on linguistic complexity, as opposed to ARA expert writers. If

collected properly, crowdsourced annotations were shown to be highly reliable for linguistics

and computational linguistics research by the survey of Munro et al. (2010).

Brunato, De Mattei, et al. (2018) extracted 1200 sentences from both the newspaper sections

of the Italian Universal Dependency Treebank (IUDT) (Simi et al., 2014) and the Penn Treebank

(McDonald et al., 2013), such that those are equally distributed in term of length. To collect

human complexity judgments, twenty native speakers were recruited for each language on

a crowdsourcing platform. Annotators had to rate each sentence’s difficulty on a Likert 7-

point scale, with 1 meaning “very simple” and 7 “very complex”. Sentences were randomly

shuffled and presented in groups of five per web page, with annotators being given a minimum

of ten seconds to complete each page to prevent skimming. The quality of annotations was

measured using the Krippendorff alpha reliability, obtaining 26% and 24% for Italian and

English. Table 1.2 presents an example of English sentences labeled with multiple annotators’

perceived complexity judgments.

As can be expected, PC judgments show significant variability across participants since they

cannot be easily framed in a relative setting. Since this work’s focus is related to a general
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notion of complexity, PC judgments are averaged and filtered to obtain a score reflecting the
mean perception of complexity of all participants in experimental chapters. The averaged score
is later treated as the gold label in a regression task, with machine learning models trained
to minimize the mean square error between their predictions and gold average annotations.
Another possibility, which is not explored in this thesis work, would be to consider only single
participants’ judgments to model their linguistic complexity perception.

1.3.3 Gaze Metrics Prediction

Gaze data collected from human subjects during reading can provide us with useful insights
from an online extrinsic complexity perspective. Patterns found in both saccades, i.e., eye
movements from one location to another, and fixations, where eyes are relatively stable while
fixating a specific region, were shown to be reliably linked to a multitude of linguistic factors
(Demberg et al., 2008). Because of this, a linking assumption between overt attention and mental
processing can be reasonably established, and gaze metrics can be considered as proxies of
cognitive effort, and thus of complexity, at various processing levels.5

Gaze metrics are widely employed in cognitive processing research because of their multiple
benefits: optical eye-tracking systems are non-invasive and relatively inexpensive compared to
other approaches that directly measure brain activity, such as electroencephalography (EEG)
and all magnetic resonance imaging (MRI) variants. Moreover, gaze data generally have high
spatial and temporal precision, limited only by sampling rates, which are generally in the order
of few milliseconds. This aspect is crucial for reading research since it allows us to directly
associate gaze measures to specific areas of interest (AOI, also called region), i.e., small portions
of the visual input provided to participants.

Gaze data for NLP Eye-tracking data and other cognitive signals were effectively used in
many NLP applications such as POS tagging (Barrett, Bingel, Keller, et al., 2016), sentiment
analysis (Mishra et al., 2017), native language identification (Berzak et al., 2018), and dependency
parsing (Strzyz et al., 2019) inter alia, often providing modest yet consistent improvements across
models and tasks through the combination of gaze features and linguistic features or distributed
representations.6 In the context of linguistic complexity assessment, eye-tracking data were
applied to the ARA task for both monolingual and bilingual participants, obtaining meaningful
results for sentence-level classification in easy and hard-to-read categories (Vasishth et al., 2013;
Ambati et al., 2016). For example, Singh et al. (2016) first use a set of linguistic features to learn
a reading times model from a set of gaze-annotated sentences and then use models’ predicted
times over a second set of sentences to perform multiple-choice ARA. González-Garduño et al.

5See Rayner (1998) for a comprehensive survey on findings related to eye-tracking research.
6See Hollenstein, Barrett, et al. (2020) for an exhaustive overview of current approaches and best practices.
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(2018) extend this approach in a multitask learning setting (Caruana, 1997; Ruder, 2017), using
eye-movement prediction tasks to produce models able to predict readability levels both from
a native speaker and foreign language learner perspective.

Collecting Eye-tracking Data A typical procedure to collect gaze data for reading research,
as described by Schotter (2020), usually includes the following steps:

• Textual inputs are selected and split by experiment designers, first in areas of interest
directly mapped to pixels (for natural reading, usually word boundaries), then over multiple
rows, and finally in screens presented to participants. This step should take into account
calibration errors to determine the correct level of tolerance for off-word fixations.

• A participant is placed in a room with a display computer used to present visual inputs
and a host computer used to record data from the eye-tracker setup. Optical eye-trackers
use infrared light beams, which are reflected differently by different parts of the eye, to
measure pupil and corneal reflection and track gaze movements at each timestep. The
setup is calibrated and validated for each participant to ensure the quality of results.

• Each participant follows the on-screen instructions to complete a reading task trial while
remaining at a fixed distance from the screen. A fixation report containing events (saccades,
fixations, blinks) is produced for each individual on the host computer.

• Finally, a data preprocessing step is taken for each trial to identify and remove artifacts
and possibly decide to reject the trial. Some examples of standard practices are the merge
of fixations below 80ms due to eye jittering, the exclusion of fixations caused by track loss
after blinks, and vertical drift correction (Carr et al., 2020). An AOI report containing gaze
metrics grouped at AOI level can be produced.

Eye-tracking Metrics Metrics derived from the AOI report contain information about the
processing phases in which subjects incur during sentence comprehension. Early gaze measures

capture information about lexical access and early processing of syntactic structures, while late

measures are more likely to reflect comprehension and both syntactic and semantic disambigua-
tion (Demberg et al., 2008). The third kind of measures, referred to as contextual following
the categorization in Hollenstein and Zhang (2019), capture information from surrounding
content. Table 1.3 presents a subset of metrics, spanning the three categories, that will be
used in the experimental section.7 These metrics represent a minimal group spanning various
stages of the reading process and are leveraged to study differences between online and offline
processing among extrinsic metrics. In the experimental part, gaze scores are often averaged

7Appendix B contains information about deriving metric values for all corpora.
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Table 1.3: Eye-tracking metrics used in this study.

Type Metric Name Description

First Fixation Duration (FFD) Duration of the first fixation over the
region, including single fixations.

First Pass Duration (FPD) Duration of the first pass over a region.
Early

Fixation Probability (FXP) Boolean value reflecting if the region was
fixated or skipped during the first pass.

Fixation Count (FXC) Number of total fixations over a region.Late
Total Fixation Duration (TFD) Sum of all fixation durations over a region.

Contextual Total Regression Duration (TRD) Duration of regressive saccades performed
after a region’s first access and before
going past it.

across participants to reduce noise in measurements and obtain a single label for each metric that

can later be used as a reference in a regression setting. The average fixation probability across

participants for each AOI is a value comprised in the range [0,1] and represents the proportion

of subjects that accessed the region during their first gaze pass.

Eye-tracking Corpora The experimental part of this thesis work leverages four widely used

eye-tracking resources: the Dundee corpus (Kennedy et al., 2003), the GECO corpus (Cop

et al., 2017), the ZuCo corpus (Hollenstein, Rotsztejn, et al., 2018), and ZuCo 2.0 (Hollenstein,

Troendle, et al., 2020). There are multiple reasons behind the choice of using multiple gaze-

annotated corpora for this study. First, those corpora span different domains and provide us

with a better intuition of what structures are perceived as complex in different settings and by

different pools of subjects. Secondly, neural-network-based complexity models used in this work

greatly benefit from a broader availability of annotated data to achieve higher performances

in predicting eye-tracking metrics. Finally, while all corpora relied on different procedures

and instrumentation, they are all derived from very similar experimental settings (i.e., natural

reading on multiple lines), and can be easily merged after an individual normalization procedure

(Hollenstein and Zhang, 2019). Table 1.4 presents some descriptive statistics of the four corpora.

• The Dundee Corpus developed by Kennedy et al. (2003) contains gaze data for ten native

English speakers tasked with reading twenty newspaper articles from The Independent.

The English section of the Dundee corpus includes 51,240 tokens in 2368 sentences. Texts

were presented to subjects on a screen five lines at a time and recorded using a Dr. Bois

Oculometer Eyetracker with 1 kHz monocular (right) sampling. Dundee corpus data are
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Table 1.4: Descriptive statistics of eye-tracking corpora.

Dundee GECO ZuCo ZuCo 2.0 Total

domain(s) news literature movie reviews,
Wiki articles

Wiki articles -

# of sentences 2368 5387 700 349 8804
mean sent. length 21.64 10.47 19.47 19.51 17.77
# of tokens 51240 56409 13630 6810 128089
unique token types 9928 6155 4650 2521 16320
mean token length 4.88 4.6 5.05 5.01 4.89
mean fix. duration 200 210 117 117 161
mean gaze duration 280 234 139 134 197

the oldest among selected corpora and have been extensively used in psycholinguistic

research about naturalistic reading.

• The Ghent Eye-tracking Corpus (GECO) by Cop et al. (2017) was created more recently

to study eye movements of both monolingual and bilingual subjects during naturalistic

reading of the novel The Mysterious Affair at Styles by Agatha Christie (2003). In the

context of this work, only the monolingual portion collected from 14 native English

speakers is used, comprising 56,409 tokens in 5,387 sentences. Eye movements were

recorded with an EyeLink 1000 system with 1 kHz binocular sampling (only right eye

movements were considered), and the text was presented one paragraph at a time.

• The Zurich Cognitive Language Processing Corpus (ZuCo) by Hollenstein, Rotsztejn,

et al. (2018) is a dataset including both eye-tracking and EEG measurements collected

simultaneously during both natural and task-oriented reading. The corpus contains 1100

English sentences from the Stanford Sentiment Treebank (Socher et al., 2013) and the

Wikipedia dump used in Culotta et al. (2006) with gaze data for 12 adult native speakers.

Only the first two portions are used for the present work since they contain natural reading

data, totalizing 700 sentences and 13,630 tokens. The text was presented on-screen one

sentence at a time, and data were collected with an EyeLink 1000 as for GECO.

• ZuCo 2.0 is an extension of ZuCo, including 739 sentences extracted from the Wikipedia

corpus by Culotta et al. (2006). Only the 349 sentences for which natural reading data

were collected are used, and the 100 duplicates shared with ZuCo to evaluate differences in

setup and participants are removed. Data were collected from 18 native English speakers

using an EyeLink 1000 Plus with 500 kHz sampling.
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Figure 1.2: Syntax trees for the initial and complete parse of garden-path example (1).

Tokens are obtained using whitespace tokenization, which is the same approach used to
perform gaze annotations across all eye-tracking corpora. Mean sentence length is expressed
in number of tokens, and the number of unique types is computed as the size of the vocabulary
after removing punctuation from all tokens. Approximately 128,000 tokens annotated with gaze
recordings from multiple participants were used in the experiments of Chapters 4 and 5, while
only GECO was used for the analysis of Chapter 3. Similarly to the PCP task, scores were
averaged across subjects to reduce noise and obtain general estimates: in particular, reading times
that were missing due to skipping were considered as having the lowest duration across annotators,
which is a practice commonly used in literature. Again, considering individual participants’
scores is deemed attractive in a personalization perspective but far beyond this work’s scope.

1.4 Garden-path Sentences

Garden-path sentences, named from the expression “leading down the garden path” implying
deception, are grammatically correct sentences that create a momentarily ambiguous interpreta-
tion in readers. The initial interpretation is later falsified by words encountered during sequential
reading, becoming a significant source of processing difficulties. For this reason, garden-path
constructions are used to evaluate models of linguistic complexity in the experiments of Chapter
5. Consider the following recent headline by the newspaper The Guardian:8

(1) Vaccine trials halted after patient fell ill restart.

Readers exposed to (1) tend to initially prefer the interpretation in which halted acts as the
main verb of the sentence in simple past, i.e., “Vaccine trials halted after patient fell ill.” is
interpreted as a well-formed and semantically meaningful sentence. When the verb restart is
reached, it suddenly becomes evident that the original parse would lead to an ungrammatical
sentence, and a reanalysis requiring nontrivial cognitive processing is triggered. In conclusion,

8https://twitter.com/drswissmiss/status/1304856856649756673

https://twitter.com/drswissmiss/status/1304856856649756673
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one understands that halted is used as a passive participle, and Vaccine trials are the subordinate

clause’s direct object, as shown in Figure 1.2. We can rephrase the sentence with minimal

changes to make it unambiguous:

(2) Vaccine trials that were halted after patient fell ill restart.

The choice for the initial parse can be explained in terms of frequency of occurrence:

subject-verb-object sentences are encountered much more frequently than ones containing

reduced relatives in everyday settings, making the first parse more likely (Fine et al., 2013).

We refer to the verb causing the reanalysis as disambiguator, and to the difference in cognitive

processing between (1) and (2), measured using proxies such as gaze metrics, as garden-

path effect (Bever, 1970).

van Schijndel et al. (2020) present two families of cognitive processing theories trying to

motivate the underlying difficulties in which humans incur with garden-path sentences:

• Two-stage accounts assume that readers consider only one or a subset of possible parses for

each sentence that it is reading (Gibson, 1991; Jurafsky, 1996), and processing difficulties

arise as a consequence of the reanalysis process need to reconstruct parses that were

initially disregarded or not considered (Frazier and Fodor, 1978).

• One-stage accounts such as surprisal theory (Hale, 2001; Levy, 2008) instead consider

difficulties produced by garden paths as the products of a single processing mechanism.

Dispreferred parses are not discarded, but rather associated with a lower probability

compared to that of likely ones: “processing difficulty on every word in the sentence,

including the disambiguating words in garden-path sentences, arises from the extent to

which the word shifts the reader’s subjective probability distribution over possible parses”

(van Schijndel et al., 2020).

There are multiple types of garden-path sentences, usually categorized based on their

respective syntactic ambiguities (Frazier, 1978). In this work, two classic garden-path families

are studied in three different settings using examples taken from Futrell, Wilcox, et al. (2019).

The first type is the MV/RR ambiguity presented in example (1), and repeated in (3a):

(3) a. The woman brought the sandwich fell in the dining room. [RED., AMBIG.]

b. The woman who was brought the sandwich fell in the dining room. [UNRED., AMBIG.]

c. The woman given the sandwich fell in the dining room. [RED., UNAMBIG.]

d. The woman who was given the sandwich fell in the dining room. [UNRED., UNAMBIG.]
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The label MV/RR indicates that brought can be initially parsed either as the main verb (MV)

in the past tense of the clause or as a passive participle introducing a reduced relative (RR)

clause, which postmodifies the subject. It is possible to rewrite the sentence by changing the

ambiguous verb to an equivalent one having different forms for simple past and past participle

(such as gave vs. given). In this case, we expect that the difference in cognitive processing

for the disambiguator fell between the reduced (3c) and the unreduced (3d) version is smaller

since the ambiguity is ruled out from the beginning.

The second type of ambiguity is the NP/Z ambiguity presented in (4a):

(4) a. As the criminal shot the woman yelled at the top of her lungs. [TRANS., NO COMMA]

b. As the criminal fled the woman yelled at the top of her lungs. [INTRANS., NO COMMA]

c. As the criminal shot, the woman yelled at the top of her lungs. [TRANS., COMMA]

d. As the criminal fled, the woman yelled at the top of her lungs. [INTRANS., COMMA]

The label NP/Z is used to indicate that the transitive verb shot can initially be understood

to have either have a noun phrase (NP) object like the woman or a zero (Z), i.e., null object

if used intransitively as it is the case for (4a). The sentence can be rewritten by substituting

the transitive verb generating the ambiguity with an intransitive one, e.g., replacing shot with

fled in (4b), by adding a disambiguating comma to force the null-object parse as in (4c), or by

doing both as in (4d). We expect that the cognitive processing difference for the disambiguator

yelled between the ambiguous (4a) and the unambiguous (4b) is smaller since the ambiguity

is ruled out from the beginning.

As an additional NP/Z setting evaluation, consider the case in which an overt object is

added to the verb introducing the ambiguity:

(5) a. As the criminal shot the woman yelled at the top of her lungs. [NO OBJ., NO COMMA]

b. As the criminal shot his gun the woman yelled at the top of her lungs. [OBJ., NO COMMA]

c. As the criminal shot, the woman yelled at the top of her lungs. [NO OBJ., COMMA]

d. As the criminal shot his gun, the woman yelled at the top of her lungs.
[OBJ., COMMA]

Again, we expect that the difference in cognitive processing for yelled is higher in the

non-object pair (5a)-(5c), where the first item is a garden-path sentence, rather than in the pair

(5b)-(5d) where both sentences are unambiguous.
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Gaze metrics and Garden-path Sentences As can be intuitively assumed, garden-path effects
are reflected in gaze metrics collected during natural reading. Multiple studies have focused on
quantifying the difference between garden-path sentences and their unambiguous counterparts
on reading times in human subjects. Sturt et al. (1999) found a massive delay of 152ms for each
word in the disambiguating region of NP/Z sentences. Grodner et al. (2003) estimate an average
delay of 64ms over the disambiguating region for NP/Z constructs using 53 college students’
reading times over a set of 20 ambiguous sentences. More recently, Prasad et al. (2019b) recorded
eye measurements for 224 participants recruited through Amazon Mechanical Turk on the same
set of NP/Z sentences as Grodner et al. (2003), finding a much lower average delay of 28ms,
and suggesting an overestimation in previous studies due to small sample size and publication
contingency to significant results. Prasad et al. (2019a) collected self-paced reading times from
73 participants recruited on the Prolific Academic crowdsourcing platform and measured an
average delay of 22ms over the disambiguating region for MV/RR constructs.

Given the high variability in results across studies, it can be hypothesized that the way in
which stimuli were presented to subjects plays a significant role in determining the magnitude of
garden-path effects (Van Schijndel et al., 2018). For example, a sentence presented word-by-word
to subjects may yield more ecologically valid reading times estimates than a sentence presented
region-by-region. Another problematic factor involves constraining the impact of garden-path
effects to the disambiguating region: first, because parafoveal preview effects may slightly

anticipate the start of the effect (Schotter et al., 2012; Schotter, 2018); and second, because
due to spillover (Mitchell, 1984), a phenomenon in which the surprisal of a word influences
the reading times for itself and at least three subsequent words (Smith et al., 2013), reading
times of the disambiguating region are influenced by preceding words, and influence subsequent
ones, spreading the garden-path effect on a much broader context. For this reason, eye-tracking
metrics are studied for all sentence regions in the experiments of Chapter 5.



Now it would be very remarkable if any system existing in the real world
could be exactly represented by any simple model. [. . . ] For such a
model there is no need to ask the question “Is the model true?”. The only
question of interest is “Is the model illuminating and useful?”.

— George Box (1976), Science and Statistics

2 | Models of Linguistic Complexity

Standard linguistic complexity studies analyze complexity annotations produced by human

subjects to evaluate how specific language structures influence our perception of complexity

under various viewpoints. For example, one can derive insights about early cognitive processing

by looking at early gaze metrics, like first pass duration and first fixation duration, or study

language comprehension by evaluating perceived complexity annotations. These approaches

rely on a single implicit assumption: that complexity annotations contain enough information

to reflect the input’s underlying complexity properties appropriately. Without this premise,

there would be a complete disconnect between human subjective perception, as reflected by

annotations and linguistic structures. Given the ever-growing compelling evidence derived from

carefully-planned complexity research, I argue that this is a relatively safe assumption to be made.

This work instead adopts a modeling-driven approach for the study of linguistic complexity.

Annotations produced by human subjects still play a fundamental role in this context. However,

instead of acting as the main subject of analysis, they are used as a source of distant supervision

to create computational models of linguistic complexity. More specifically, machine learning

models are trained to predict complexity annotation from raw input text by minimizing a task-

specific loss function. The learning step here is fundamental, given the connection mentioned

above between linguistic complexity and knowledge acquisition. After the training process,

human annotations are put aside, and the model itself is studied as a complexity-sensitive

subject: in particular, this study focuses on how the information encoded in the parameters

of complexity-trained models is related to structural linguistic properties (Chapter 3), how

this information differs when models are exposed to different complexity perspectives during

training (Chapter 4) and finally how the encoded knowledge affects models’ generalization

capabilities over unseen constructs (Chapter 5).

While this approach still relies on the annotation pertinence assumption stated above, it

requires making a second, stronger hypothesis: that models employed can grasp a significant

portion of the relations subsisting between language structures and complexity perspectives.

23
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This assumption can be further declined in two requirements. First, from a conceptual point-

of-view, we must ensure that the model architecture is endowed with meaningful inductive

biases concerning what is currently known about linguistic complexity. This includes having

sufficient approximation capabilities to capture linguistic complexity phenomena, which are

likely to be highly-nonlinear functions of the input. From a functional perspective, then, we

should confirm that the quality of model predictions is sufficiently close to human-produced

annotations to make their production mechanisms worth investigating.

This chapter justifies the selected modeling approach and introduces models later employed

in complexity assessment experiments. Section 2.1 discusses the conceptual requirements for

linguistic complexity modeling and motivates the choice of pretrained neural language models
as primary subjects of this thesis work. Section 2.2 presents the architectures used in experimental

sections and their desirable properties regarding the encoding of linguistic structures in latent

representations. Finally, Section 2.3 presents the challenge of interpreting NLM’s representations

and behaviors and introduces various interpretability approaches used throughout this study.

2.1 Desiderata for Models of Linguistic Complexity

From the in-depth analysis of Chapter 1, we can distill some general desiderata for an idealized

LCA model M∗. From a linguistic perspective:

• M∗ should distinguish between lexical forms and be informed about their probability of

occurrence. This is a basic (although fundamental) step given the importance of words’

variety and frequency in determining our perception of complexity.

• M∗ should be aware of syntactic structures and sensitive to their properties. As we saw

with garden-path sentences, atypical or ambiguous syntax constructs are among the most

prominent factors for determining the magnitude of processing difficulties. An ideal model

should map complex syntactic constructs to higher complexity scores and discriminate

potentially ambiguous or problematic structures from regular ones, even when changes in

the form are minimal (e.g., when a single comma is missing).

• M∗ should capture semantic information and relations between entities. Ideally, this

means the ability to frame agents, patients, and actions in a semantic context and evaluate

how likely or typical the latter is. For example, semantically unrelated entities occurring

together in a sentence should produce an increase in processing difficulties. This includes

the ability to disambiguate polysemic terms (e.g., “fly” verb vs. noun) given the surrounding

context.
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Then, from a technical standpoint:

• M∗ should not rely on hand-crafted features to represent language. This is an implicit

requirement since this study aims to analyze how the model autonomously learns to

represent language in its parameters while simultaneously encoding information about

its complexity. Chapter 3 presents how complexity models with hand-crafted features

compare to those selected for the study.

• M∗ should not rely too heavily on labeled data. Complexity datasets presented in Chapter

1 are usually composed of a few thousand labeled examples. While this may seem a lot

to our eyes, a language model may require a lot more information to achieve sufficient

generalization capabilities. A viable option in this context, as we will see with NLMs, is

to prime models with general linguistic knowledge through an unsupervised pretraining

procedure before training them on complexity-related tasks.

• M∗ should be sufficiently interpretable. Ideally, we would like to draw direct causal

relations from input properties to complexity prediction in a consistent way across

complexity perspectives. More realistically, we need at least to find coherent patterns

between the model’s inputs and its predictive behaviors.

Most standard modeling approaches fail to encompass even a small subset of those non-trivial

requirements. For example, one can consider modeling complexity properties with static word

representations (Turian et al., 2010) such as Word2Vec or GloVe embeddings (Mikolov, Chen,

et al., 2013; Pennington et al., 2014). In these approaches, feature vectors representing words

are learned by a neural network through a pretraining procedure to model word co-occurrences.

While these approaches were shown to capture a significant amount of semantic information while

reducing the dependence on labeled data thanks to pretraining, static word embeddings generally

yield modest results when employed for syntactic predictions (Andreas et al., 2014). Moreover,

since the model learns a direct mapping f : ti→ vi from lexical forms to vectorial representations,

polysemic terms are reduced to single context-independent representation, and contextual

information that often plays a crucial role in determining complexity is mixed and diluted.

Among more sophisticated modeling approaches for representing language, I argue that

modern neural language models (NLMs) are the approaches that yield a better match for the

requirements stated above. These models consist of multi-layer neural networks (Goodfellow

et al., 2016) pretrained using standard language modeling or masked language modeling training

objectives to produce contextualized word embeddings, which were shown to be very effective

in downstream syntactic and semantic tasks (Peters et al., 2018) even with relatively few labeled

examples. Moreover, being language models, NLMs predict a probability distribution over their
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vocabulary at each step, enabling us to compute information-theoretic metrics such as surprisal

that we saw being conceptually close to one-stage cognitive processing accounts. Finally, their

high parameter counts and the presence of self-attention mechanisms (Bahdanau et al., 2015;

Vaswani et al., 2017) as learned weighting functions suggests that NLMs might be capable of

learning to approximate highly nonlinear functions effectively.

The most significant downside of NLMs in the context of our analysis is their opaqueness.

As for most neural networks, the nonlinear multi-layer structure that characterizes NLMs makes

them incredibly valid function approximators. At the same time, though, it hinders our efforts

in interpreting their behaviors (Samek et al., 2019). Because of this fact, in recent years, we

witnessed a surge in approaches trying to “open the black box” of neural networks by using

various techniques borrowed from information theory (Shwartz-Ziv et al., 2017) and cognitive

science (Kriegeskorte et al., 2008). Given the wide availability of these approaches, this work

joins the choir of interpretability researchers and argues that studying how such performant

models encode their knowledge about language complexity is still a matter of interest and

worth exploring. In the next section, the architecture and training process of NLMs will be

formalized, and their properties will be described in detail.

2.2 Neural Language Models: Unsupervised Multitask
Learners

The objective of natural language processing applications such as summarization, machine

translation, and dialogue generation is to produce text that is both fluent and contextually

accurate. As we saw in Chapter 1, a text’s fluency can also be used as a significant factor in

determining its complexity from a linguistic viewpoint. A possible approach to establishing

a sentence’s fluency is to rely on relative frequency estimates for words in large corpora.

Consider a sentence s and a large corpus C. We can estimate its probability of occurrence

in natural language as:

P(s) =
count(s)
|C|

(2.1)

While this is an unbiased estimator since it converges to the actual frequency value when

the corpus size is sufficiently large, it is both very data-reliant and highly unreliable. If a

sentence happens to be absent in C, it will be assigned probability equal to zero. Therefore,

we need to rely on other approaches, such as language models, to obtain reliable estimates

from limited training datasets.
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As we saw in Chapter 1.2.2, language models assign probabilities to sequences of tokens.

Formally, this can be framed as learning words’ conditional probability distributions given their

context, either preceding or bidirectional depending on the language modeling approach. I will

here refer to sequential language models unless otherwise mentioned.

Language models are trained on sequences x = 〈x1, . . . ,xn〉 composed by n tokens taken

from a predefined vocabulary V . Each token xi can be represented as a one-hot encoded vector

xi ∈ {0,1}|V|, and the probability of sequence x is factored using the chain rule:

P(x) =
n

∏
t=1

P(xt |x1, . . . ,xt−1) (2.2)

After the training process, we can use the likelihood that the model assigns to held-
out data y treated as a single stream of m tokens as an intrinsic evaluation metric for the

quality of its predictions:

`(y) =
m

∑
t=1

logP(xt |x1, . . . ,xt−1) (2.3)

`(y) can be rephrased in terms of perplexity, an information-theoretic metric independent

from the size of the held-out set:

PPL(y) = 2−`(y)/m (2.4)

PPL is equal to 1 if the language model is perfect (i.e., predicts all tokens in the held-out

corpus with probability 1) and matches the vocabulary size |V| when the model assign a uniform

probability to all tokens in the vocabulary (a “random” language model):

log2(y) =
m

∑
t=1

log2
1
|V|

=−
m

∑
t=1

log2 |V|=−m log2 |V| (2.5)

PPL(y) = 2
1
m m log2 |V| = 2log2 |V| = |V| (2.6)

Perplexity represents the number of bits required to encode the average word in the corpora.

For example, reporting a perplexity score of 10 over a held-out corpus means that the language

model will predict on average words with the same accuracy as if it had to choose uniformly

and independently across ten possibilities for each word.
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While tokens used by language models generally correspond to words in most NLP pipelines,

recent language modeling work highlighted the effectiveness of using subword tokens (Sennrich

et al., 2016; Wu et al., 2016; Kudo et al., 2018) or even single characters to further improve

LM’s generalization performances. In particular, models used in this work rely on SentencePiece

and Byte-Pair Encoding (BPE) subword tokenization (Sennrich et al., 2016; Kudo et al., 2018).

The SentencePiece algorithm derives a fixed-size vocabulary from word co-occurrences in a

large corpus and treats whitespace as a normal symbol by converting it to “_”, while BPE does

the same using the “Ġ” character. For example:

Input sentence: Heteroscedasticity is hard to model!

SentencePiece tokenization: _Hetero s ced astic ity _is _hard _to _model !

BPE tokenization: H eter os ced astic ity Ġis Ġhard Ġto Ġmodel !

where whitespaces correspond to separators after tokenization. From the example, we can

observe that frequent words like hard, to and model are treated similarly by both tokenizers,

while rare words like heteroscedasticity are split into subwords depending on their observed

frequency inside the tokenizer’s training corpus.

In recent years n-gram language models, which were the most common approach to estimate

probabilities from relative frequencies, have been largely supplanted by neural networks. A

significant advantage of neural approaches is the overcoming of context restrictions: relevant

information can be incorporated from arbitrarily distant contexts while preserving the tractability

of the problem from both a statistical and a computational viewpoint.

Neural language models treat language modeling as a discriminative learning task aimed at

maximizing the log conditional probability of a corpus. Formally, the probability distribution

p(x|c) is reparametrized as the dot product of two dense numeric vectors θ x,hc ∈ RH under

a softmax transformation:

P(x|c) = exp(θ x ·hc)

∑x′∈V exp(θ x′ ·hc)
(2.7)

In (2.7), the denominator is present to ensure that the probability distribution is properly

normalized over vocabulary V . θ x represent model parameters that can be learned through an

iterative procedure, while hc is the contextual information that can be computed in different

ways depending on the model. For example, a neural language model based on the recurrent
neural network architecture (RNN; Mikolov, Karafiát, et al. (2010)) recurrently updates context
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Figure 2.1: The original Transformer model architecture by Vaswani et al. (2017).

vectors initialized at random with relevant information that needs to be preserved while moving

through the sequence.1

This work leverages models belonging to the most recent and influential family of neural

language models at the time of writing, that is, the one based on the Transformer architecture

(Vaswani et al., 2017). Transformers are deep learning models designed to handle sequential

data and were conceived to compensate for a significant downside of recurrent models: the

need to process data in an orderly manner to perform backpropagation through time. By

replacing recurrent computations with attention mechanisms to maintain contextual information

throughout the model, Transformers’ operations are entirely parallelizable on dedicated hardware

and therefore lead to reduced training times. This fact is especially relevant considering the

massive corpora size used to pretrain neural language models to obtain contextual representations.

Self-attention was also shown to behave better than other approaches at learning long-range

dependencies, avoiding the vanishing gradient problem that plagued non-gated recurrent NLMs

altogether (Pascanu et al., 2013).

1Refer to Chapter 6.3 of Eisenstein (2019) for additional details about recurrent language models.
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The original Transformer architecture comprises an encoder and a decoder, each composed

of a stacked sequence of identical layers that transform input embeddings in outputs with

the same dimension (hence the name). First, the encoder maps the sequence (x1, . . . ,xn) to a

sequence of embeddings z = (z1, . . . ,zn). Given z, the decoder then autoregressively produces

an output token sequence (y1, . . . ,ym). Each layer of the Transformer encoder comprises two

sublayers, a multi-head self-attention mechanism and a feed-forward network, surrounded

by residual connections and followed by layer normalization. The decoder includes a third layer

that performs multi-head self-attention over the encoder output and modifies the original self-

attention sublayer to prevent attending to future context, as required by the language modeling

objective. Figure 2.1 presents the original architecture for a N-layer Transformer. I will now

proceed to describe the main components of the Transformer model.

Positional Encodings The original Transformer relies on two sets of embeddings to represent

the input sequence: learned word embeddings, used as vector representations for each token

in the vocabulary, and fixed positional encodings (PEs) used to inject information about the

position of tokens in the sequence. Those are needed since no information about the sequential

nature of the input would otherwise be preserved. For position pos and dimension i, PEs

correspond to sinusoidal periodic functions that were empirically shown to perform on par with

learned embeddings, and were chosen to enable extrapolation for longer sequences:

PEpos,2i = sin(pos/100002i/|h|) (2.8)

PEpos,2i+1 = cos(pos/100002i/|h|) (2.9)

where |h| is the model’s hidden layer size. Embeddings and PEs are summed and passed to the

attention layer.

Self-Attention The scaled dot-product self-attention mechanisms is the driving force of the

Transformer architecture. Given an input embedding matrix X , we multiply it by three weight

matrices W Q,W K,WV obtaining the projections Q (queries), K (keys) and V (values). Those

are then combined by the self-attention function as follows:

Attention(Q,K,V) = softmax
(QKT
√

dk

)
V (2.10)
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where dk is the size of individual query and key vectors. The output of this operation
is a matrix Z which will be passed to the feed-forward layer. The self attention mechanism
is further extended to multi-head self-attention in Transformer architectures. In the multi-
head variant, the attention function is applied in parallel to n version of queries, keys and
values projected with learned parameter matrices, and outputs are finally concatenated and
projected again to obtain final values:

MultiHead(Q,K,V ) = Concat(head1, . . . ,headn)W O (2.11)

where headi = Attention(QW Q
i ,KW K

i ,VWV
i ) (2.12)

Where W Q
i ∈ R|h|×dk , W K

i ∈ R|h|×dk , WV
i ∈ R|h|×dv and W O ∈ Rndv×|h|. In multi-head

attention layers of Figure 2.1, each position can attend to all position from the previous layer,
while in the masked multi-head attention layer only previous positions in the sequence can
be attended by applying a triangular mask to attention matrices. This additional step is needed
to preserve the autoregressive property during decoding.

Feed-forward Layer Each block in the encoder and the decoder contains an independent
fully connected 2-layer feed-forward network with a ReLU nonlinearity applied separately
to each position of the sequence:

FFN(Z) = max(0,Z Θ1 +b1)Θ2 +b2 (2.13)

where Z are the representations passed forward from the attention sublayer, Θ1,Θ2 are two
learned independent parameter matrices for each layer and b1,b2 are their respective bias vectors.

Now that the main concepts regarding the Transformer architecture have been introduced,
the two Transformer-based models used in this study will be presented.

GPT-2 GPT-2 (Radford et al., 2019) is a transformer model built using only the decoder blocks
with masked self-attention, alongside BPE tokenization. The latter’s autoregressive capabilities,
i.e. being able to iteratively add a newly predicted token to the existing sequence in the next
steps, make it especially suitable for text generation and related tasks. The learning of model
parameters is performed in two stages. First, an unsupervised pretraining is carried out to
learn a high capacity language model on a large corpus: in particular, here the model is trained
to maximize the likelihood of sequential language modeling over WebText, a corpus containing
roughly 8 million documents (40GB of text), by adapting its parameters using stochastic gradient
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descent. The purpose of this step is to learn contextual word embeddings encoding both low
and high-level information that can be recycled in downstream tasks, following the transfer
learning approach inspired by the field of computer vision and initially proposed by Howard
et al. (2018) for NLP. The second step is a supervised fine-tuning, where the language modeling
softmax layer is replaced by a task-specific layer (called head) with parameters Wy receiving
final transformer activations hl and predicting a label y (e.g. in a classification task) as:

P(y|x1, . . . ,xm) = softmax(hsent
l Wy) (2.14)

where hsent
l is the sentence-level representation for (x1, . . . ,xm). The parameters of the whole

model, including transformer blocks and task-specific heads, can then be tuned by minimizing
the loss L over the whole supervised corpus C:

L(C) =− ∑
(x,y)

logP(y|x1, . . . ,xm) (2.15)

Figure 2.2 visualizes the forward pass through the GPT-2 architecture. We see from the
figure that attention patterns learned during pre-trained are often interpretable. Here, the token
it is correctly identified as the pronoun referring to the subject a robot. Authors show how
large NLMs such as GPT-2 become strong unsupervised multitask learners when trained on
sufficiently large corpora, providing the initial motivation for choosing pretrained Transformer
models for experiments throughout this study. GPT-2 will be specifically be employed in the
experiments of Chapter 5, where its autoregressive nature is ideal for replicating human surprisal
estimates during sequential reading on garden-path sentences.

ALBERT ALBERT (Lan et al., 2020) is an efficient variant of the Bidirectional Encoder
Representations from Transformers (BERT) approach by Devlin et al. (2019). BERT was built
following the intuition that many sentence-level tasks would greatly benefit from an approach
capable of incorporating bidirectional context inside language representations. This is not the case
for decoder-based approaches like GPT-2 that, being aimed at generation-oriented tasks, could
only leverage the previous context using masked self-attention. BERT tackles the unidirectional
constraint by introducing masked language modeling (MLM, see Equation (1.5)) and using a
stack of transformer encoder layers with GELU nonlinearities (Hendrycks et al., 2016).

As for GPT-2, the pretraining and fine-tuning steps are taken to provide the model with
general language knowledge and subsequently adapt it to specific downstream tasks. At each
pretraining step, a fixed portion of input tokens get masked, and the model predicts the original
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Figure 2.2: An overview of the forward pass in GPT-2. Adapted from Alammar (2018b).

vocabulary id of masked tokens. Moreover, a sentence-level task is used to improve discourse
coherence. For BERT, the next sentence prediction (NSP) task is adopted, i.e. determining
whether, given two sentences, they are consecutive or not in the original text using both positive
and negative pairs. NSP was found unreliable by subsequent studies and was replaced in ALBERT
by a sentence ordering prediction loss that is more challenging for the model. A third set of
segment embeddings is added to initial representations to distinguish input sentences in multi-
sentence tasks. Special tokens [CLS] and [SEP] are added as sentence-level representations.

ALBERT introduces two main contributions aimed at reducing the final number of model
parameters inside BERT:

• Factorized embedding parametrization: a projection layer is introduced between the
embedding matrix E and the hidden layer H of the model so that the dimensions of the
two are untied. This approach modifies embedding parameter count from O(|V |× |E|)
to O(|V|× |E|+ |E| × |h|), with |V|, |E|, |h| being respectively the sizes of vocabulary,
embedding vectors and hidden layers. A significant reduction in model parameters is
therefore produce when |h| � |E|, which is desirable since H contains context-dependent

representations that encode more information than the context-independent ones of E.

• Cross-layer parameter sharing: All layers of ALBERT share the same set of feed-
forward and self-attention parameters. Therefore, we can see ALBERT as an iterated
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Figure 2.3: Using a pretrained ALBERT model for the ARA task. Adapted from Alammar (2018a).

function f n
A : h→ h′, where n is the number of encoder layers present in the model (in this

study n = 12), with parameters trained using end-to-end stochastic gradient descent.

Both factors significantly contribute to reducing the computational complexity of the model

without affecting too much its performances: the ALBERT base used in all experimental chapters

of this study have 9x fewer parameters than a regular BERT base model (12M vs. 108M) while

performing comparably well on many natural language understanding benchmarks such as

GLUE (Wang et al., 2018) and SQuAD (Rajpurkar et al., 2016).

Figure 2.3 presents how a pretrained ALBERT model can be leveraged for sentence clas-

sification, using the ARA task as an example. We note that the procedure is the same as for

GPT-2: a task-specific classification head is initialized with random weights, and the whole

model-head architecture is fine-tuned on the target task end-to-end. The figure also shows

how the common choice for BERT-based models is to use their [CLS] token h1
12 as the full-

sentence representation equivalent hsent
12 .

To conclude, the fine-tuning approach relying on a pretrained model “body” and a task-

specific head adopted in both GPT-2 and ALBERT can be extended out-of-the-box to a multitask
learning scenario. A multitask approach can prove useful when considering parallel annotations

on the same corpus that provide similar but complementary information about a studied phe-

nomenon’s nature. We can interpret this as an inductive bias that encourages finding knowledge
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representations to explain multiple sets of annotations at once.2 More specifically, multitask

learning with hard parameter sharing (Caruana, 1997) is performed in all experimental sections

over eye-tracking scores to produce representations encompassing the whole set of phenomena

related to natural reading. For doing so, each metric was associated with a task-specific head,

and the whole set of heads was trained while sharing the same underlying model.

2.2.1 Emergent Linguistic Structures in Neural Language Models

This section presents evidence in support of the ability of pretrained language models to

effectively encode language-related properties in their learned representations.3

Lin et al. (2019) were among the first to highlight how BERT representations encode

hierarchical structures akin to syntax trees, despite the absence of syntactic information or

recurrent biases during pretraining. Liu et al. (2019) and Tenney et al. (2019) further showed

that contextualized embeddings produced by BERT encode information about part-of-speech,

entity roles, and partial syntactic structures.

Hewitt and Manning (2019) formulate the syntax distance hypothesis, assuming that there

exists a linear transformation B of the word representation space under which vector distance

encodes parse trees. They proceed to test this assumption equating L2 distance in the 2-

dimensional space of representations projected by B ∈ R2×|h| and tree distances in parse trees,

finding a close match between BERT representational space and Penn Treebank formalisms.

The approach is visualized in Figure 2.4. Jawahar et al. (2019) work support these findings,

highlighting a close match between BERT representation and dependency trees after testing

multiple decomposition schemes. The syntax distance hypothesis’s validity is especially relevant

to this work, given the aforementioned importance of syntactic properties in driving human

subjects’ perception of complexity.

Despite the evidence of syntactic knowledge in contextual word representations, recent

results suggest that the model may not leverage this for its predictions. Ettinger (2020) highlights

the insensitivity of BERT to negation and malformed inputs using psycholinguistic diagnostics

commonly used with human subjects, while Wallace et al. (2019) show that nonsensical inputs

do not affect the prediction quality of BERT, despite having a clear input on underlying syntactic

structures. These results are coherent with the experimental findings of this study and will

be further discussed in later sections.

2See Ruder (2017) for a comprehensive overview
3Rogers et al. (2020) and Linzen and Baroni (2021) are surveys covering this topic.
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Figure 2.4: The mapping from 2D representation space to syntax tree distances adopted in Hewitt and
Manning (2019).

2.3 Analyzing Neural Models of Complexity

Having introduced the model architectures that will be used throughout this study, we will
now focus on the interpretability approaches allowing us to analyze and compare neural
network representations.

When training deep neural networks, we would like to go beyond predictive performance and
understand how different design choices and training objectives affect learned representations
from a qualitative viewpoint. This fact is especially crucial in the model-driven approach
adopted in this work, as stated at the end of Section 2.1. While for linear models, the direct
correspondence between the magnitude of feature coefficients and feature importance provides
us with some out-of-the-box insights about decision boundaries and feature importance, the
hierarchical and nonlinear structure that characterizes neural networks produce model weights
that are relatively uninformative when taken in isolation.

This work focuses on two interpretability perspectives: highlighting linguistic knowledge
encoded in model representations (Chapter 3) and comparing representations across models
trained on different complexity-related tasks (Chapter 4). For the first objective, probing

classifiers, which have become the de-facto standard in the interpretability literature, are
used to evaluate the amount of information encoded in each layer of the model.4 In the
second case, two multivariate statistical analysis methods, namely representational similarity

analysis and canonical correlation analysis, are leveraged to quantify the relation between
model embeddings by evaluating their second-order similarity and learning a mapping to a
shared low-dimensional space, respectively. The following sections conclude the chapter by
presenting the three approaches in detail.

4See Belinkov and Glass (2019) survey and Belinkov, Gehrmann, et al. (2020) tutorial.
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2.3.1 Probing classifiers

The probing task approach is a natural way to estimate the mutual information shared by a

neural network’s parameters and some latent property that the model could have implicitly learned

during training. During probing experiments, a supervised model (probe) is trained to predict the

latent information from the network’s learned representations. If the probe does well, we may

conclude that the network effectively encodes some knowledge related to the selected property.

Formally speaking, let f : xi → yi be a neural network model mapping a corpus of input

sentences X =(x1, . . . ,xn) to a set of outputs Y =(y1, . . . ,yn). Assume that each sentence xi is also

labeled with some linguistic annotations zi, reflecting the underlying properties we aim to detect.

Let also hl(xi) be the network’s output at the l-th layer given the sentence xi as input. To estimate

the quality of representations hl with respect to property z, a supervised model g : hl(xi)→ zi

mapping representations to property values is trained. We take such model’s performances as a

proxy of H(hl(x),z). In information theoretic terms, the probe is trained to minimize entropy

H(z|hl(x)), and by doing that it maximizes mutual information between the two quantities.

The probe g does not need to be a linear model. While historically simple linear probes were

used to minimize the risk of memorization, recent results show that more complex probes produce

tighter estimates for the actual underlying information (Pimentel et al., 2020). To account for the

probe’s ability to learn the task through sheer memorization, Hewitt and Liang (2019) introduce

control tasks using the performances of a probe exposed to random labels as baselines.

Alain et al. (2016) were among the first to use linear probing classifiers as tools to evaluate

the presence of task-specific information inside neural networks’ layers. The approach was

later extended to the field of NLP by Conneau et al. (2018) and Zhang et al. (2018) inter

alia, which evaluated the presence of semantic and syntactic information inside sentence

embeddings generated by LSTM encoders (Hochreiter et al., 1997) pretrained on different

objectives using probing task suites. Recently, Miaschi and Dell’Orletta (2020) showed how

contextual representations produced by pretrained Transformer models could encode sentence-

level properties within single-word embeddings. Moreover, Miaschi, Brunato, et al. (2020)

highlighted the tendency of pretrained NLMs to lose general linguistic information during the

fine-tuning process and found a positive relation between encoded linguistic information and

the downstream performances of the model.

2.3.2 Representational Similarity Analysis

Representational similarity analysis (RSA, Laakso et al. (2000)) is a technique developed in

the field of cognitive science to evaluate the similarity of fMRI responses in selected regions of

the brain after a stimulus (Kriegeskorte et al., 2008). The technique can be extended to compare
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Figure 2.5: The Representational Similarity Analysis (RSA) algorithm applied to the representations of
three models. Image taken from Abnar (2020).

the heterogeneous representational spaces formed by a set of computational models m exposed

to a shared set of observations. Figure 2.5 visualizes the approach. First, each model is fed with

a shared corpus of n sentences to produce a set of matrix embeddings (E1, . . . ,Em), where E i
j

represents the embedding produced by the last layer of the i-th model on the j-th sentence of

the corpus.5 Next, for each matrix E i a representational distance matrix Si is produced such

that Si
j,k = sim(E i

j,E
i
k), Si ∈ Rn×n where sim1 is a similarity function (here, dot product). Si

encodes information on the similarity subsisting between model activations across different

observations. Finally, a second-level representational similarity matrix S′ is computed, where

for each pair of matrices (Si,S j) the corresponding S′i, j entry has value:

S′i, j = S′j,i =
1
n

n

∑
k=1

sim2
(

η (Si
k),η (S j

k)
)

(2.16)

where η is the L1 normalization function and sim2 is a similarity function (here, Pearson’s

correlation coefficient). Each entry S′i, j corresponds to a similarity score between activity

patterns of model i and model j across the entire set of n observations.

In the context of NLP, Abnar, Beinborn, et al. (2019) recently used RSA to compare the

activations of multiple neural language models and evaluated the impact of parameter values on

5This can be any layer; embeddings can be produced by different layers of the same model.
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the representations formed by a single model. Interestingly, they also use RSA to compare fMRI
imaging data collected from human subjects and NLMs activations. Abdou et al. (2019) use
RSA to highlight the connection between processing difficulties (measured by high gaze metrics
values) and the representational divergence, both inter and intra-encoder. Abnar, Dehghani,
et al. (2020) visualize training paths of various neural network architectures as 2D projections
of RSA and show how different inductive biases can be transferred across network categories
using knowledge distillation (Hinton et al., 2015).

2.3.3 Projection-Weighted Canonical Correlation Analysis

Canonical correlation analysis (CCA, Thompson (1984)) is a statistical technique for relating
two sets of observations arising from an underlying unknown process. In the context of this
work, the underlying process is represented by NLMs being trained on complexity-related
tasks. Given a corpus of sentences X = (x1, . . . ,xm) annotated with complexity labels, we
have that zl

=(z
l
i(x1), . . .zl

i(xm)) corresponds to all activations of neuron zi at layer l stacked to
form a vector.6 If we consider all activations of all neurons in a layer Li = (zi

1, . . . ,z
i
n) for all

inputs, we can represent them as a matrix Ai ∈ Rm×n, i.e. a set of multidimensional variates
where n is the number of neurons in the layer. The CCA algorithm aims to identify the best

(i.e. most correlated) linear relationship under mutual orthogonality and norm constraints

between two sets of multidimensional variates, which in this case are activation matrices like
L1. This approach was used, among other things, to study the coherence between modeled
and real brain activations (Sussillo et al., 2015).

Formally, if we have two activation matrices A1,A2 ∈ Rm×n we aim to find vectors w,v ∈ Rm

such that the correlation:

ρ =
〈wT A1,vT A2〉
‖wT A1‖ · ‖vT A2‖

(2.17)

is maximized. The formula can be solved by changing the basis and recurring to sin-
gular value decomposition. The output of CCA is a set of singular pairwise orthogonal
vectors u,v and their canonical correlation coefficients ρ ∈ [0,1] representing the correlation
of vectors wT A1 and vT A2.

The SVCCA method (Raghu et al., 2017) extends the CCA approach for deep learning
research by pruning neurons through a singular value decomposition step before computing
canonical correlation coefficients. As the authors mention, “This is especially important in
neural network representations, where as we will show many low variance directions (neurons)

6Different from the activation vector, i.e. all neurons’ activations for a single input (zl
1(x1), . . . ,zl

n(x1))
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SVD SVD

Figure 2.6: Projection-Weighted Canonical Correlation Analysis (PWCCA) applied to last-layer
representations of two language models.

are primarily noise”. Then, the similarity between two layers L1,L2 is computed as the mean
correlation coefficient produce by SVCCA, and adapted to a distance measure for evaluation:

dSVCCA(A1,A2) = 1− 1
|ρ|

|ρ|

∑
i=1

ρ
(i) (2.18)

Morcos et al. (2018) suggest that the equal importance given to all the |ρ| SVCCA vectors
during the final averaging step may be problematic since it has been extensively shown that
overparametrized neural networks often do not recur to their full dimensionality for representing
solutions (Frankle et al., 2018). They suggest replacing the mean with a weighted mean:

dPWCCA(A1,A2) = 1−
|ρ|

∑
i=1

αρ
(i) with α̃i = ∑

j
|〈hi,x j〉| (2.19)

where weights α corresponds to the portion of inputs x accounted for by CCA vectors h and α̃i

values are normalized such that ∑i αi = 1. The resulting approach, projection-weighted canonical

correlation analysis (PWCCA), is used in this study and was shown to be much more robust
than SVCCA to filter noise in activations. Figure 2.6 visualizes the selected approach.

Notable applications of CCA-related methods in NLP are Saphra et al. (2019), where
SVCCA is used to study the evolution of LSTM language models’ representations during
training, and Voita et al. (2019), where PWCCA is used to compare Transformer language
models across layers and pretraining objectives.



3 | Complexity Phenomena in Linguistic
Annotations and Language Models

This chapter investigates the relationship between online gaze metrics and offline
perceived complexity judgments by studying how the two viewpoints are represented
by a neural language model trained on human-produced data. First, a preliminary
analysis of linguistic phenomena associated with the two complexity viewpoints is
performed, highlighting similarities and differences across metrics. The effectiveness
of a regressor based on explicit linguistic features is then evaluated for sentence
complexity prediction and compared to the results obtained by a fine-tuned neural
language model with contextual representations. In conclusion, the linguistic
competence inside the language model’s embeddings is probed before and after
fine-tuning, showing how linguistic information encoded in representations changes
as the model learns to predict complexity.

Given the conceptual similarity between raw cognitive processing and human perception

of complexity, this chapter investigates whether the relation between eye-tracking metrics and

complexity judgments can be highlighted empirically in human annotations and language model

representations. With this aim, linguistic features associated with various sentence-level structural

phenomena are analyzed in terms of their correlation with offline and online complexity metrics.

The performance of models using either complexity-related explicit features or contextualized

word embeddings is evaluated, focusing mainly on the neural language model ALBERT (Lan

et al., 2020) introduced in Section 2.2. The results highlight how both explicit features and

learned representations obtain comparable performances when predicting complexity scores.

Finally, the focus is shifted to studying how complexity-related properties are encoded in

the representations of ALBERT.

This perspective goes in the direction of exploiting human processing data to address the

interpretability issues of unsupervised language representations (Hollenstein, de la Torre, et al.,

2019; Gauthier and Levy, 2019; Abnar, Beinborn, et al., 2019), leveraging the probing task

approach introduced in Section 2.3.1. It is observed that online and offline complexity fine-tuning

produces a consequent increase in probing performances for complexity-related features during

probing experiments. This investigation has the specific purpose of studying whether and how

learning a new task affects the linguistic properties encoded in pretrained representations. While

pre-trained models have been widely studied using probing methods, the effect of fine-tuning

on encoded information was seldom investigated. To my best knowledge, no previous work

41
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has taken into account sentence complexity assessment as a fine-tuning task for NLMs. Results

suggest that the model’s abilities during training are interpretable from a linguistic perspective

and are possibly related to its predictive capabilities for complexity assessment.

Contributions This is the first work displaying the connection between online and offline

complexity metrics and studying how a neural language model represents them. This work:

• Provides a comprehensive analysis of linguistic phenomena correlated with eye-tracking

data and human perception of complexity, addressing similarities and differences from a

linguistically-motivated perspective across metrics and at different levels of granularity;

• Compares the performance of models using both explicit features and unsupervised

contextual representations when predicting online and offline sentence complexity; and

• Shows the natural emergence of complexity-related linguistic phenomena in the represen-

tations of language models trained on complexity metrics.1

3.1 Data and Preprocessing

The experiments of this chapter leverage two corpora, each capturing different aspects of linguis-

tic complexity:

Eye-tracking For online complexity metrics, only the monolingual English portion of GECO

(Cop et al., 2017), presented in Section 1.3.3, was used. Four online metrics spanning multiple

phases of cognitive processing are selected, respectively: first pass duration (FPD), total fixation

count (FXC), total fixation duration (TFD) and total regression duration (TRD) (see Table 1.3

for more details). Metrics are sum-aggregated at sentence-level and averaged across participants

to obtain a single label for each metric-sentence pair. As a final step to make the corpus more

suitable for linguistic complexity analysis, all utterances with fewer than five words, deemed

uninteresting from a cognitive processing perspective, are removed.

Perceived Complexity For the offline evaluation of sentence complexity, the English portion

of the corpus by Brunato, De Mattei, et al. (2018) was used (Section 1.3.2). Sentences in the

corpus have uniformly-distributed lengths ranging between 10 and 35 tokens. Each sentence

is associated with 20 ratings of perceived-complexity on a 1-to-7 point scale. Duplicates and

sentences for which less than half of the annotators agreed on a score in the range µn±σn, where

1Code available at https://github.com/gsarti/interpreting-complexity

https://github.com/gsarti/interpreting-complexity
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Table 3.1: Descriptive statistics of the two sentence-level corpora after the preprocessing procedure.

Perceived Complexity Eye-tracking (GECO)

labels PC FPD, FXC, TFD, TRD
domain(s) financial news literature
aggregation steps avg. annotators sentence sum-aggregation +

avg. participants
filtering steps filtering by agreement +

remove duplicates
min. length > 5

# of sentences 1115 4041
# of tokens 21723 52131
avg. sent. length 19.48 12.9
avg. token length 4.95 4.6

Length-binned subsets (# of sentences)
Bin 10±1 size 173 899
Bin 15±1 size 163 568
Bin 20±1 size 164 341
Bin 25±1 size 151 215
Bin 30±1 size 165 131
Bin 35±1 size 147 63

µn and σn are respectively the average and standard deviation of all annotators’ judgments for

sentence n were removed to reduce noise coming from the annotation procedure. Again, scores

are averaged across annotators to obtain a single metric for each sentence.

Table 3.1 presents an overview of the two corpora after preprocessing. The resulting eye-

tracking (ET) corpus contains roughly four times more sentences than the perceived complexity

(PC) one, with shorter words and sentences on average. The differences in sizes and domains

between the two corpora account for multi-genre linguistic phenomena in the following analysis.

3.2 Analysis of Linguistic Phenomena

As a first step to investigate the connection between the two complexity paradigms, the correlation

of online and offline complexity labels with various linguistic phenomena is evaluated. The

Profiling-UD tool (Brunato, Cimino, et al., 2020) introduced in Section 1.2.1 is used to annotate

each sentence in our corpora and extract from it ~100 features representing their linguistic

structure according to the Universal Dependencies formalism (Nivre et al., 2016). These features

capture a comprehensive set of phenomena, from basic information (e.g. sentence and word

length) to more complex aspects of sentence structure (e.g. parse tree depth, verb arity), including

properties related to sentence complexity at different levels of description. A summary of the

most relevant features is presented in Appendix A. Features are ranked using their Spearman’s
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Figure 3.1: Ranking of the most correlated linguistic features for selected metrics. All of Spearman’s
correlation coefficients have p < 0.001.

correlation score with complexity metrics, and scores are leveraged to highlight the relation

between linguistic phenomena and complexity paradigms.

The correlation scores analysis highlights how features showing a significant correlation with

eye-tracking metrics are twice as many as those correlating with PC scores and generally tend to

have higher coefficients, except for the total regression duration (TRD) metric. Nevertheless, the

most correlated features are the same across all metrics. Figure 3.1 reports correlation scores for

features showing a strong connection (|ρ|> 0.3) with at least one of the evaluated metrics. As

expected, sentence length (n_tokens) and other related features capturing structural complexity

aspects occupy the top positions in the ranking. Among those, we can note the length of

dependency links (max_links_len, avg_links_len) and the depth of the whole parse tree or selected

sub-trees, i.e. nominal chains headed by a preposition (parse_depth, n_prep_chains). Similarly,

the distribution of subordinate clauses (sub_prop_dist, sub_post) is positively correlated with all

metrics but with a more substantial effect for eye-tracking ones, especially in the presence of
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longer embedded chains (sub_chain_len). Interestingly, the presence of numbers (upos_NUM,

dep_nummod) affects only the offline perception of complexity, while it is never strongly

correlated with all eye-tracking metrics. This finding is expected since numbers are very

short tokens and, like other functional POS, were never found to be strongly correlated with

online reading in our results. Conversely, numerical information has been identified as a factor

hampering sentence readability and understanding (Rello et al., 2013).

3.2.1 Linguistic Phenomena in Length-controlled Bins

Unsurprisingly, sentence length is the most correlated predictor for all complexity metrics. Since

many linguistic features highlighted in our analysis are strongly related to sentence length, we

tested whether they maintain a relevant influence when this parameter is controlled. To this

end, Spearman’s correlation was computed between features and complexity tasks, but this time

considering bins of sentences having approximately the same length. Specifically, we split each

corpus into six bins of sentences with 10, 15, 20, 25, 30, and 35 tokens, respectively, with a

range of ±1 tokens per bin to select a reasonable number of sentences for our analysis. Resulting

subsets have a relatively constant size for the PC corpus, which was constructed ad-hoc to have

such uniform length distribution, but have a sharply decreasing size for the eye-tracking corpus

(see Table 3.1, bott. While deemed appropriate in the context of this correlation analysis, the

disparity in bin sizes may play a significant role in hampering the performances of models trained

on binned linguistic complexity data. This perspective is discussed in Section 3.3.

Figure 3.2 reports the new rankings of the most correlated linguistic features within each bin

across complexity metrics (|ρ| > 0.2). Again, we observe that features showing a significant

correlation with complexity scores are fewer for PC bins than for eye-tracking ones. This fact

depends on controlling for sentence length and the small size of bins for the whole dataset.

As in the coarse-grained analysis, TRD is the eye-tracking metric less correlated to linguistic

features, while the other three (FXC, FPD, TFD) show a homogeneous behavior across bins. For

the latter, vocabulary-related features (token-type ratio, average word length, lexical density)

are always positive and top-ranked in all bins, especially when considering shorter sentences

(i.e. from 10 to 20 tokens). For PC, this is true only for some of them (word length and lexical

density). On another note, features encoding numerical information are still highly correlated

with the offline perception of complexity in almost all bins.

Interestingly, features modeling subordination phenomena extracted from fixed-length

sentences exhibit a reverse trend than when extracted from the whole corpus, i.e. they are

negatively correlated with judgments. If, on the one hand, an increase in the presence of

subordination for longer sentences (possibly making sentences more convoluted) was expected,
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Figure 3.2: Rankings of the most correlated linguistic features for metrics within length-binned subsets
of the two corpora. Squares show the correlation between features (left axis) and a complexity metric (top)
at a specific bin of length (bottom). Coefficients ≥ 0.2 or ≤ -0.2 are highlighted, and have p < 0.001.

on the other hand, when the length is controlled, findings suggest that subordinate structures

are not necessarily perceived as a symptom of sentence complexity.

The analysis also highlights how linguistic features relevant to online and offline complexity

are different when controlling for sentence length. This aspect, in particular, was not evident

from the previous coarse-grained analysis. Despite blocking sentence length, gaze measures

are still significantly connected to length-related phenomena (high correlation with n_tokens at

various length bins). This observation can be possibly due to the ±1 margin applied for sentence

selection and the high sensitivity of behavioral metrics to small input changes.
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Table 3.2: Average Root-Mean-Square Error (
√

E2) and R2 score values for sentence-level complexity
predictions using 5-fold cross-validation. Lower

√
E2 and higher R2 are better.

PC FXC FPD TFD TRD
√

E2 R2
√

E2 R2
√

E2 R2
√

E2 R2
√

E2 R2

Statistical baselines
Avg. score 0.87 0 6.17 0.06 1078 0.06 1297 0.06 540 0.03
Bin average 0.53 0.62 2.36 0.86 374 0.89 532 0.85 403 0.45

Explicit features
SVM length 0.54 0.62 2.19 0.88 343 0.9 494 0.86 405 0.45
SVM feats 0.44 0.74 1.77 0.92 287 0.93 435 0.92 400 0.46

Learned representations
ALBERT 0.44 0.75 1.98 0.92 302 0.93 435 0.9 382 0.49

3.3 Modeling Online and Offline Linguistic Complexity

Given the high correlations reported above, the next step involves quantifying the importance
of explicit linguistic features from a modeling standpoint. Table 3.2 presents the RMSE and
R2 scores of predictions made by baselines and models for the selected complexity metrics.
Performances are tested with a 5-fold cross-validation regression with a fixed random seed on
each metric. Our baselines use average metric scores of all training sentences (Avg. score) and
average scores of sentences binned by their length, expressed in number of tokens, as predictions
(Bin average). The two linear SVM models leverage explicit linguistic features, using respectively
only the n_tokens feature (SVM length) and the whole set of linguistic features presented above
(SVM feats). Besides those, the performances of a state-of-the-art Transformer neural language
model relying entirely on contextual word embeddings are equally tested. ALBERT (Lan et al.
(2020); see Section 2.2) as a lightweight yet effective alternative to BERT (Devlin et al., 2019) for
obtaining contextual word representations, using its last-layer [CLS] sentence embedding as input
for a linear regressor during fine-tuning and testing. We selected the last layer representations,
despite strong evidence on the importance of intermediate representation in encoding language
properties, because we aim to investigate how superficial layers encode complexity-related
competence. Given the availability of parallel eye-tracking annotations, we train ALBERT using
multitask learning with hard parameter sharing (Caruana, 1997) on gaze metrics.2

From Table 3.2 it can be noted that:

• The length-binned average baseline is very effective in predicting complexity scores and
gaze metrics, which is unsurprising given the extreme correlation between length and
complexity metrics presented in Figure 3.1;

2Training procedure and parameters are thoroughly described in Appendix F.
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Figure 3.3: Average Root-Mean-Square Error (RMSE) scores for models in Table 3.2, performing 5-fold
cross-validation on the length-binned subsets used for Figure 3.2. Lower scores are better.

• The SVM feats model shows considerable improvements if compared to the length-only

SVM model for all complexity metrics, highlighting how length alone accounts for much

but not for the entirety of variance in complexity scores;

• ALBERT performs on-par with the SVM feats model on all complexity metrics despite

the small dimension of the fine-tuning corpora and the absence of explicit linguistic

information.

A possible interpretation of ALBERT’s strong performances is that the model implicitly

develops competence related to phenomena encoded by linguistic features while training on

online and offline complexity prediction. We explore this perspective in Section 3.4.

3.3.1 Modeling Complexity in Length-controlled Bins

Similarly to the approach adopted in Section 3.2.1, the performances of models are tested on

length-binned data to verify their consistency in the context of length-controlled sequences.

Figure 3.3 presents RMSE scores averaged with 5-fold cross-validation over the length-binned

sentences subsets for all complexity metrics. It can be observed that ALBERT outperforms
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the SVM with linguistic features on nearly all bins and metrics, showing the largest gains on
intermediate bins for PC and gaze durations (FPD, TFD, TRD). Interestingly, models’ overall
performances follow a length-dependent increasing trend for eye-tracking metrics, but not for
PC. This behavior can be possibly explained in terms of the high sensibility to length previously
highlighted for online metrics, as well as the broad variability in bin dimensions. It can also
be observed how the SVM model based on explicit linguistic features (SVM feats) performs
poorly on larger bins for all tasks, sometimes being even worse than the bin-average baseline.
While this behavior seems surprising given the positive influence of features highlighted in Table
3.2, this phenomenon can be attributed to the small dimension of longer bins, which negatively
impacts the generalization capabilities of the regressor. The relatively better scores achieved by
ALBERT in those, instead, support the effectiveness of information stored in pretrained language
representations when a limited number of examples are available.

3.4 Probing Linguistic Phenomena in ALBERT
Representations

As shown in the previous section, ALBERT performances in complexity predictions are compa-
rable to those of an SVM relying on explicit linguistic features and even better than those when
controlling for length. The probing task interpretability paradigm (Section 2.3.1) is adopted to
investigate if ALBERT encodes the linguistic knowledge that we identified as strongly correlated
with online and perceived sentence complexity during training and prediction. In particular,
the aim of this investigation is two-fold:

• Probing ALBERT’s innate competence in relation to the broad spectrum of linguistic
features described in Appendix A; and

• Verifying whether, and in which respect, this competence is affected by a fine-tuning
process on the complexity assessment metrics.

Three UD English treebanks spanning different textual genres – EWT, GUM, and ParTUT
respectively by Silveira et al. (2014), Zeldes (2017), and Sanguinetti et al. (2015) – were
aggregated, obtaining a final corpus of 18,079 sentences with gold linguistic information which
was used to conduct probing experiments. The Profiling-UD tool was again leveraged to extract n

sentence-level linguistic featuresZ = z1, . . . ,zn from gold linguistic annotations. Representations
A(x) were generated for all corpus sentences using the last-layer [CLS] embedding of a pretrained
ALBERT base model without additional fine-tuning, and n single-layer perceptron regressors
gi : A(x)→ zi are trained to map representations A(x) to each linguistic feature zi. Finally, the
error and R2 scores of each gi were evaluated as proxies for the quality of representations A(x)
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Table 3.3: Root MSE (
√

E2) and R2 scores for diagnostic regressors trained on ALBERT representations,
respectively, without fine-tuning (Base), with PC and eye-tracking (ET) fine-tuning on all data (left) and
on the 10±1 length-binned subset (right). Bold values highlight relevant increases in R2 from Base.

Base PC ET PC10±1 ET10±1
√

E2 R2
√

E2 R2
√

E2 R2
√

E2 R2
√

E2 R2

n_tokens 8.19 0.26 4.66 0.76 2.87 0.91 8.66 0.18 6.71 0.51
parse_depth 1.47 0.18 1.18 0.48 1.04 0.6 1.50 0.16 1.22 0.43
vb_head_per_sent 1.38 0.15 1.26 0.3 1.14 0.42 1.44 0.09 1.30 0.25
xpos_dist_. 0.05 0.13 0.04 0.41 0.04 0.42 0.04 0.18 0.04 0.38
avg_links_len 0.58 0.12 0.53 0.29 0.52 0.31 0.59 0.1 0.56 0.2
max_links_len 5.20 0.12 4.08 0.46 3.75 0.54 5.24 0.11 4.73 0.28
n_prep_chains 0.74 0.11 0.67 0.26 0.66 0.29 0.72 0.14 0.69 0.21
sub_prop_dist 0.35 0.09 0.33 0.13 0.31 0.22 0.34 0.05 0.32 0.15
upos_dist_PRON 0.08 0.09 0.08 0.14 0.08 0.07 0.07 0.23 0.08 0.15
pos_dist_NUM 0.05 0.08 0.05 0.06 0.05 0.02 0.05 0.16 0.05 0.06
dep_dist_nsubj 0.06 0.08 0.06 0.1 0.06 0.05 0.05 0.17 0.06 0.11
char_per_tok 0.89 0.07 0.87 0.12 0.90 0.05 0.82 0.22 0.86 0.14
prep_chain_len 0.60 0.07 0.57 0.17 0.56 0.19 0.59 0.12 0.56 0.18
sub_chain_len 0.70 0.07 0.67 0.15 0.62 0.26 0.71 0.04 0.66 0.16
dep_dist_punct 0.07 0.06 0.07 0.06 0.07 0.14 0.07 0.06 0.07 0.14
dep_dist_nmod 0.05 0.06 0.05 0.07 0.05 0.06 0.05 0.09 0.05 0.09
sub_post 0.44 0.05 0.46 0.12 0.44 0.18 0.47 0.05 0.45 0.14
dep_dist_case 0.07 0.05 0.06 0.06 0.07 0.08 0.07 0.07 0.07 0.1
lexical_density 0.14 0.05 0.13 0.03 0.13 0.03 0.13 0.13 0.13 0.13
dep_dist_compound 0.06 0.04 0.06 0.05 0.06 0.03 0.06 0.1 0.06 0.07
dep_dist_conj 0.04 0.03 0.04 0.04 0.04 0.04 0.05 0.02 0.04 0.03
ttr_form 0.08 0.03 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05
dep_dist_det 0.06 0.03 0.06 0.02 0.06 0.04 0.06 0.03 0.06 0.03
dep_dist_aux 0.04 0.02 0.04 0.01 0.04 0.01 0.04 0.06 0.04 0.04
pos_dist_VBN 0.03 0.01 0.03 0 0.03 0 0.03 0.01 0.03 0
xpos_dist_VBZ 0.04 0.01 0.04 0.01 0.04 0.02 0.04 0.02 0.04 0.02
ttr_lemma 0.09 0.01 0.09 0.06 0.09 0.06 0.09 0.04 0.09 0.03

in encoding their respective linguistic feature zi. The same evaluation is repeated for ALBERTs

fine-tuned respectively on perceived complexity labels (PC) and on all eye-tracking labels with

multitask learning (ET), averaging scores with 5-fold cross-validation. A selected subset of

results is shown on the left side of Table 3.3.

As it can be observed, ALBERT’s last-layer sentence representations have relatively low

knowledge of complexity-related probes, but their performances highly increase after fine-tuning.

Specifically, a noticeable improvement was obtained on features that were already better encoded

in base pretrained representation, i.e. sentence length and related, suggesting that fine-tuning

possibly accentuates only properties already well-known by the model, regardless of the target

task. To verify that this isn’t the case, the same probing tests were repeated on ALBERT
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models fine-tuned on the smallest length-binned subset (i.e. 10±1 tokens) presented in previous
sections. The right side of Table 3.3 presents the resulting scores. From the length-binned
correlation analysis of Section 3.2, PC scores were observed to be mostly uncorrelated with
length phenomena, while ET scores remain significantly affected despite our controlling of
sequence size. This observation also holds for length-binned probing task results, where the PC
model seems to neglect length-related properties in favor of task-specific ones that were also
highlighted in our fine-grained correlation analysis (e.g. word length, numbers, explicit subjects).
The ET-trained model follows the same behavior, retaining strong but lower performances
for length-related features.

In conclusion, although higher probing task performances after fine-tuning are not direct
proof that the neural language model exploits newly-acquired morpho-syntactic and syntactic
information, results suggest that training on tasks strongly connected with underlying lin-
guistic structures triggers a change in model representations resulting in a better encoding
of related linguistic properties.

3.5 Summary

In this chapter, the connection between eye-tracking metrics and the offline perception of
sentence complexity was investigated from an experimental standpoint. An in-depth correlation
analysis was performed between complexity scores and sentence linguistic properties at differ-
ent granularity levels, highlighting the strong relationship between metrics and length-affine
properties and revealing different behaviors when controlling for sentence length. Models using
explicit linguistic features and unsupervised word embeddings were evaluated on complexity
prediction, showing comparable performances across metrics. Finally, the encoding of linguistic
properties in a neural language model’s contextual representations was tested with probing tasks.
This approach highlighted the natural emergence of task-related linguistic properties within the
model’s representations after the fine-tuning process. Thus, it can be conjectured that a relation
subsists between the model’s linguistic abilities during the training procedure and its downstream
performances on morphosyntactically-related tasks and that linguistic probes may provide a
reasonable estimate of the task-oriented quality of representations.



4 | Representational Similarity in Models
of Complexity

The experiments of this chapter aim to shed light on how the linguistic knowledge
encoded in the contextual representations of complexity-trained neural language
models varies across layers of abstraction and fine-tuning tasks. Two similarity
approaches, Representational Similarity Analysis (RSA) and Projection-Weighted
Canonical Correlation Analysis (PWCCA) are used to evaluate the relation subsisting
between representations spanning different models and different layers of the same
model. The outcomes are finally compared against a set of assumptions aimed
at determining a model’s generalization capabilities across language phenomena.
Results provide empirical evidence about the inability of state-of-the-art language
modeling approaches to effectively represent an abstract hierarchy of linguistic
complexity phenomena.

Chapter 3 highlighted how the relation between online and offline complexity perspectives

and linguistic phenomena diverge when considering same-length sentences and how those

properties of language are adequately captured by a neural language model fine-tuned on

complexity metrics. This chapter adopts a complementary perspective on the model-driven study

of complexity. Instead of connecting learned representations to the input’s structural properties, it

explores how those representations change when the same model is exposed to different training

objectives using similarity measures. This approach is used to gain insights on the underlying

similarities across complexity metrics, using representations as proxies for the knowledge needed

to correctly model various complexity phenomena under a minimal set of assumptions.

The same ALBERT (Lan et al., 2020) model introduced in Section 2.2 and used for the

last section’s probing task experiments is leveraged for this chapter’s experiments.1 The

model is first taken as-is in its pre-trained version without fine-tuning (referred to as Base).

Then, three instances of it are fine-tuned respectively on Automatic Readability Assessment
(RA, Section 1.3.1), Perceived Complexity Prediction (PC, Section 1.3.2) and Eye-tracking
Metrics Prediction (ET, Section 1.3.3) until convergence. The four models are evaluated in

two settings: first, by comparing the similarity of same-layer representation across models

(inter-model similarity), and then comparing the similarity across different layers of the same

model (intra-model similarity). For each setting, two similarity metrics are used: Representa-

tional Similarity Analysis (RSA, Section 2.3.2) and Projection-Weighted Canonical Correlation

1The albert-base-v2 checkpoint from transformers (Wolf et al., 2020) is used.

52
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Analysis (PWCCA, Section 2.3.3). RSA and PWCCA were selected since they provide different

perspectives over the similarity of representations: if, on the one hand, RSA naively evaluates the

similarity across input representations through correlation, PWCCA factors in the importance of

sparsity patterns that characterize overparametrized neural networks using a projection operation.

Both token and sentence-level representations are evaluated to obtain a fine-grained overview

of representational similarity.

The models trained on perceived complexity and eye-tracking metrics are again the main

subjects of this study, given the logical and empirical relation subsisting between the two

complexity perspectives highlighted in previous chapters. The additional use of Base and

readability-trained models allows us to verify whether ALBERT representations satisfy a minimal

set of assumptions deemed necessary and sufficient for modeling an abstraction hierarchy of

linguistic complexity phenomena in an interpretable fashion. Results produced by representa-

tional similarity experiments diverge significantly from the initial hypothesis, suggesting the

prominence of surface structures and task setups over underlying general knowledge about the

nature of the modeled phenomena in shaping representations during the training process.

Contributions While multiple works aimed at inspecting NLM representations by mean of

similarity approaches already exist, this is the first work to the best of my knowledge that does so

with the explicit purpose of evaluating the impact of linguistic complexity training. This work:

• Highlights similarity and differences in the representations of models trained on different

complexity-related tasks to understand how neural network parameters capture different

perspectives over linguistic complexity after the training process;

• Presents similarity and differences in the representations found at different layers of

the same model to understand how knowledge is distributed hierarchically at various

abstraction levels after training;

• Provide evidence about the inability of state-of-the-art NLP approaches to learning to

effectively represent an abstract hierarchy of linguistic complexity phenomena in an

unsupervised manner, relying solely on complexity-related annotations.2

2Code available at https://github.com/gsarti/interpreting-complexity

https://github.com/gsarti/interpreting-complexity
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4.1 Knowledge-driven Requirements for Learning Models

At the beginning of Chapter 2 two prerequisites to any model-driven study were defined: that
available annotated corpora should be informative about the underlying phenomena we are trying
to model, and that sufficiently elaborate models should be able to represent knowledge to solve
phenomena-related tasks after being trained on those corpora effectively. This section formalizes
the two assumptions and builds upon them to define a set of fundamental requirements that
should be satisfied by models capable of generalizing over unseen linguistic structures after
undergoing a learning process. Let:

• Cφ

α =
[
(x1,α1) . . .(xm,αm)

]
be an annotated corpus containing some knowledge relative

to an abstract phenomenon of interest φ encoded in its annotations α . x can represent
any i-th linguistic structure or substructure (sentence, word, morpheme). This notation
can be generalized to settings where annotations are not explicitly defined (e.g. in the
context of language modeling, next structure xi +1 acts as an annotation for xi) or when
multiple annotations are present (e.g. if C has two sets of annotations α,β modeling the
same phenomenon K is equivalent to two corpora Cφ

α ,C
φ

β
with shared x’s).

• M be a model that, after being trained on Cφ

α , learns representations (i.e. parameters) that
allow him to map correctly linguistic structures to annotations

• Kφ be a set containing all empirical knowledge that is specifically relevant to phenomenon
φ . Kφ

α represents all knowledge relative to φ contained in a corpus Cφ

α . Concretely,
given a corpus Cφ

α , we can logically infer from it some estimate knowledge K̃φ

α such that
K̃φ

α 'K
φ

α ⊂Kφ .

• ς
φ

α,β (x) be an idealized similarity function reflecting the similarity between two sets of
representations in performance-driven terms relative to phenomenon φ , i.e. measuring
their invariance in relation to all knowledge sets Kϕ , with φ 6= ϕ that are irrelevant to
phenomenon φ .

For example, taking linguistic complexity as φ , and the GECO corpus as Cφ

α (with α being
e.g. the total fixation duration annotations), we may have K̃φ

α (i.e. our inferred knowledge
about linguistic complexity) contains the observation o = “longer structures are more complex”
because longer words have longer total fixation durations on average. Note that the relation
o ∈ Kφ

α can only be hypothesized whenever a corpus with different annotations Cφ

β
pertinent

to the same phenomenon allows us to infer a K̃φ

β
such that o ∈ K̃φ

α ∩K̃
φ

β
(e.g. longer sentences

are also deemed more complex on average in the perceived complexity corpus, so length is
probably related to complexity in general).
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Chapter 2 assumptions can now be summarized in a single statement:

Assumption 4.1 (Learning-driven encodability) A learning process that trains a model M on a

corpus Cφ

α up to a reasonable accuracy is equivalent to an encoding function that maps φ -relevant

knowledge contained in Cφ

α to M’s learned representations.

If Assumption 4.1 is verified, then annotations must be informative, and the model must be

able to encode all knowledge present in the corpora relevant to the phenomena. On top of that

foundational assumption, three further requirements that are sufficient and necessary for building

interpretable learning models able to represent knowledge in a generalizable manner are defined:

Assumption 4.2 (Knowledge-similarity interrelation) Given two corpora Cφ

α ,C
φ

β
providing

different and possibly complementary knowledge about the same phenomenon φ and represen-

tations RM
α ,RM

β
learned by a model M trained respectively on the two corpora, the more those

representations are similar in relation to φ , the more φ -related shared knowledge is contained

in the two corpora. When the two representations are perfectly φ -similar, the two corpora

share the same φ -related knowledge.

Assumption 4.3 (Pertinence-based preponderance) The amount of knowledge Kφ

α related to

phenomenon φ contained in a corpus Cφ

α that explicitly encodes some knowledge about φ is

always larger than the amount of knowledge relative to φ contained in any corpus Cφ ′

β
which

explicitly covers a different phenomenon φ ′ by means of its annotations β .

Assumption 4.4 (Knowledge-similarity transitivity) Given three corpora Cφ

α ,C
φ

β
,Cφ

γ providing

different views over the same phenomenon φ and representations RM
α ,RM

β
,RM

γ learned by a

model M trained on each one of them respectively, if a pair of those representations has higher

φ -similarity than another, then the respective pair of corpora also have a larger amount of

shared φ -related knowledge and vice versa.

The experimental section of this chapter is aimed at testing whether those requirements are

satisfied by ALBERT. Assumption 4.2 enables us to use representational similarity measures to

evaluate our corpora’s latent knowledge related to linguistic complexity. In particular, RSA and

PWCCA will be used respectively as naive and more advanced approximations of ς that evaluate

representations’ distance in the n-dimensional space across multiple linguistic structures.

The first step in this verification process involves comparing representations learned by

ALBERT models trained on PC, ET, and RA against those of Base. Since the base model

was exposed to a general MLM pre-training, without having access to any complexity-related

annotation, it can be hypothesized that the three complexity-trained models had access to more
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complexity-related information during training (Assumptions 4.1 and 4.3), and thus learned

representations that are closer together in similarity terms than those of Base (Assumption 4.2).

The other perspective involves evaluating how different views related to the same phenomenon

are captured. While perceived complexity annotations and gaze metrics are at the antipodes

of the processing spectrum (see Figure 1.1), they should logically contain more complexity-

related shared information than readability categories since they are both related to the reader’s

viewpoint, while RA captures the writer’s perspective. If Assumption 4.4 is verified, then it

can be hypothesized that ALBERT-PC and ALBERT-ET learned representations closer together

in similarity terms than those of the ALBERT-RA model.

Before moving to the experiments, two crucial aspects should be highlighted. First, corpus

size was abstracted away from the verification process despite being commonly known to be

an essential factor in shaping neural network training effectiveness. In particular, we should

be aware that the size imbalance across available corpora can be a significant source of error

in the evaluation process. Secondly, sentence-level training objectives are used for PC and

RA tasks, while ALBERT-ET is trained on token-level annotations.3 If, on the one hand,

this difference in training approaches can act as an additional confounder when evaluating

requirements, from another perspective, it can provide us with some information relative to

the generalization abilities of ALBERT beyond task setup.

4.2 Experimentsl Evaluation

This section describes the similarity experiments that have been carried out over model repre-

sentations across multiple training setups. First, Section 4.2.1 presents the data used to train

ALBERT models and evaluate their representational similarity. Then, Section 4.2.2 focuses

on validating the assumptions formulated at the beginning of this chapter by evaluating the

intra-model similarity across all model pairs. Finally, Section 4.2.3 employs the same similarity

approach in an intra-model setting, providing us with some evidence on how linguistic knowledge

is encoded hierarchically across ALBERT layers during the training process.

4.2.1 Data

The experiments of this chapter leverage all corpora that were presented in Sections 1.3.1, 1.3.2

and 1.3.3 for fine-tuning the three complexity models whose representations were compared

against each other and the Base pre-trained ALBERT. Specifically:
3More details on this procedure are provided in Appendix C.
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Readability Assessment The OneStopEnglish corpus (Vajjala and Lučić, 2018) is leveraged

by splitting each document into sentences and labeling those with the original reading level. A

total of 7190 sentences equally distributed across the Elementary, Intermediate, and Advanced

levels are used to fine-tune ALBERT-RA in a multiclass classification setting.

Perceived Complexity The English portion of the corpus by Brunato, De Mattei, et al. (2018)

was again used to fine-tune ALBERT-PC, following the same preprocessing steps detailed

in Section 3.1 of the previous chapter.

Eye-tracking The GECO (Cop et al., 2017), Dundee (Kennedy et al., 2003), ZuCo (Hollen-

stein, Rotsztejn, et al., 2018) and ZuCo 2.0 (Hollenstein, Troendle, et al., 2020) corpora were

merged (Total column of Table 1.4) and used to train the ALBERT-ET model. As opposed to

the previous section’s sentence-level approach, ALBERT-ET is trained to predict gaze metrics

at token-level to obtain a fine-grained perspective over the input’s complexity and fully exploit

the information available through gaze recordings.4

Evaluation All models are evaluated by measuring the similarity of their representations of the

Stanford Sentiment Treebank (SST, Socher et al. (2013)). The version of the treebank leveraged

for this study contained 11,855 sentences and was selected because the movie review genre is

different from all textual genres encompassed by the available corpora (except ZuCo, which

represent only a small fraction of the whole set of eye-tracking data used). Sentiment annotations

were removed, and only sentences were considered.

4.2.2 Inter-model Representational Similarity

The inter-model similarity is evaluated by comparing layer-wise representations of models trained

on different tasks using the same ALBERT architecture. Given the representations produced by

two ALBERT models trained on different complexity-related annotations for all the sentences in

the SST corpus, their similarity is evaluated using both RSA and PWCCA in three settings:

• [CLS] token: Only the sentence-level [CLS] initial embedding is considered when

evaluating similarity at each layer for all sentences in the SST corpus.

• Tokens’ average: A sentence-level embedding obtained by averaging all the individual

subword embeddings produced by ALBERT is considered when evaluating similarity at

each layer for all sentences in the SST corpus.

4See Appendix B for additional details on the preprocessing and merging of eye-tracking corpora.
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(a) CLS token (b) Tokens’ average

(c) All tokens

Figure 4.1: Inter-model RSA scores across layers for all ALBERT models’ combinations. Layer -1
corresponds to the last layer before prediction heads. Higher scores denote stronger inter-model similarity.

• All tokens: The subword embeddings produced by ALBERT for all SST sentences

are considered when evaluating similarity at each layer, including [CLS], [SEP] and

regular token embeddings, for all sentences in the SST corpus. In practice, the number

of considered embedding was set to a maximum of 50,000 to limit such an approach’s

computational costs.

Figure 4.1 presents inter-model RSA scores for all model combinations and layers, going from

the input layer after initial embeddings (-12) to the last layer before prediction heads (-1).

Given the RSA similarity metric has range [0,1], it can be observed that representational

similarity varies greatly across layers, ranging from very high (∼ 0.9) across bottom layers of the

models to very low (< 0.1) for top layers. This observation supports the widely accepted claim
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that layers closer to the input in NLMs are almost unaffected by task-specific fine-tuning since

they encode low-level properties, while layers closer to prediction heads represent task-related

abstract knowledge and tend to diverge rapidly during training.

In settings involving the PC-trained model (yellow, red, and green lines in Figure 4.1) no sharp

decrease in similarity is observed across the top layer for all three variations. Conversely, spikes

of decreasing similarity are observed for top layers of all other model pairs. While in terms of

[CLS] all models behave comparably, there is a marked dissimilarity between PC and ET-trained

models for top layers when considering all token representations, both with and without averaging

(green line in Figures 4.1 a,b). Conversely, RA’s [CLS] representations behave similarly to the

ones of other models, but token representations stay very similar to Base even for top layers,

i.e. are slightly affected by fine-tuning (purple line in Figures 4.1 b,c). It can be hypothesized

that the RA-trained model cannot collect relevant token-level information since it misses the

relative perspective that, as saw in Section 1.3.1, plays a key role for readability assessment.

In this case, PC and ET-trained models are the only ones building relevant complexity-related

knowledge, but they still tend to diverge in terms of representational similarity.

Figure 4.2 presents PWCCA scores in the exact same setup as Figure 4.1. It does not come as

a surprise that scores, in this case, tend to increase while moving towards prediction heads since

the PWCCA distance on the y-axis represents here a function of representational dissimilarity

between different layers. Besides this difference, a sharp contrast in behavior is observed in

relation to RSA scores, with generally smaller value ranges (∼ 0.0 to 0.4).

In terms of [CLS] representations, (PC, Base) and (RA, Base) are the two closest pairs, while

(PC, ET) and (RA, ET) are furthest. This relation can be rationalized if considering that PC and

RA-trained models are trained using the [CLS] token representation for prediction and have

relatively few annotations if compared to the token-level trained ET model. The contrast is

even more pronounced when PWCCA distances are measured across token averages (Figure

4.2 b). Here, pairs containing the ET model quickly diverge from the common trend and settle

to a shared PWCCA distance for top layers. Finally, the comparison of all individual token

representation contradicts previous RSA trends by showing a remarkably consistent divergence

from Base representations at all layers for all the three complexity-trained models.

All in all, both RSA and PWCCA suggest an abstraction hierarchy where the closeness of a

representation layer to prediction heads is proportional to the magnitude of changes in parameter

values during the training process. While RSA similarity highlights a markedly different

behavior for the readability-trained model, the more advanced PWCCA method indicates that

representations of models trained with similar objectives stay close in parameter space throughout

training, regardless of the conceptual proximity phenomena modeled by their loss functions.
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(a) CLS token (b) Tokens’ average

(c) All tokens

Figure 4.2: Inter-model PWCCA distances across layers for all ALBERT models’ combinations. Layer -1
corresponds to the last layer before prediction heads. Higher values denote weaker inter-model similarity.

4.2.3 Intra-model Representational Similarity

The intra-model similarity is evaluated in the same setting of the previous section. However,

instead of comparing the same layer across two different models, the representations learned by

all layer pairs inside the same model are compared using RSA and PWCCA. Again, the three

perspectives of [CLS], token’s average, and all tokens introduced in the previous chapter are

evaluated to understand the shift in representations across layers at different levels of granularity

(two sentence-level and one token-level).

Figure 4.3 presents intra-model RSA similarity scores for all layer pairs of the Base model,

going from the input layer after initial embeddings (-12) to the last layer before prediction heads

(-1). Only the Base model results are presented in this chapter since they are very similar to
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(a) CLS token (b) Tokens’ average

(c) All tokens

Figure 4.3: Intra-model RSA scores across layers’ combinations for the pre-trained ALBERT model
without fine-tuning (Base). Layer -1 corresponds to the last layer before prediction heads. Higher values
denote stronger inter-layer similarity.

those produced by fine-tuned models. The latter can be found in Appendix D. The first insight

relative to RSA intra-model results is that ALBERT layers tend to learn representations that

are generally very similar to those of layers in their neighborhood, especially for layers found

at the center and close to the input embeddings of the model. While in the case of [CLS]

similarity scores fall sharply beyond the preceding/following layer for each layer, suggesting a

significant variation in the information encoded across the model structure, the high-similarity

range is much broader for tokens’ average and all tokens representations. It is interesting to note

that the top two layers (-1 and -2) are almost always very dissimilar in relation to the rest of

the model, which is coherent with the spiking behavior around inter-model scores highlighted
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(a) CLS token (b) Tokens’ average

(c) All tokens

Figure 4.4: Intra-model PWCCA distances across layers’ combinations for the pre-trained ALBERT
model without fine-tuning (Base). Layer -1 corresponds to the last layer before prediction heads. Higher
values denote weaker inter-layer similarity.

in the previous section. Another interesting observation is that, while [CLS] and all tokens’

representations are consistently decreasing, the tokens’ average representation similarity follows

an undulatory behavior across middle layers for all the tested models, with similarity scores

dropping and raising while moving away from reference layer. This fact further supports the

evidence that token’s sentence-level average may better integrate language information from

lower layers into high-level representations, as highlighted by Miaschi and Dell’Orletta (2020)

in the context of morphosyntactic knowledge.

Figure 4.4 presents PWCCA scores in the exact same setup as Figure 4.3. As in the previous

section, the inverse trend in scores here is due to PWCCA being a dissimilarity measure,
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and the range of result scores is smaller than the one of RSA. Conversely to the previous
setting, [CLS] representations stay closer across layers when their similarity is measured using
PWCCA, and there are no significant spikes in score values. The latter finding is coherent
with the effect of cross-layer parameter sharing adopted by ALBERT authors. Quoting Lan
et al. (2020): “We observe that the transition from layer to layer [in terms of L2 distances and
cosine similarity] are much smoother for ALBERT than for BERT. These results show that
weight-sharing affects stabilizing network parameters”. In the context of [CLS] representations,
the lowest layer (-12) appears to be slightly closer to the top layers than the subsequent ones. This
fact ultimately supports the intuition that ALBERT is heavily overparametrized, and first-level
embeddings already capture much information.

Again for intra-model similarity, PWCCA highlights an abstraction hierarchy inside ALBERT
with smoother and generally more reasonable transitions than those showed by RSA. There
is no reason to believe that ALBERT adapts its representation hierarchy as a function of its
objective since intra-model similarity scores stay approximately the same before and after
fine-tuning for all complexity corpora.

4.3 Summary

In this chapter, the representations learned by a neural language model fine-tuned on multiple
complexity-related tasks were compared using two widely-used representational similarity
approaches. Token and sentence-level representations were compared both considering the same
layer across models exposed to different training corpora and different layer pairs contained in
the same model. In the first case, the absence of a preponderant similarity between complexity-
trained models when compared to the pre-trained one suggests that those models learn their
objective by overfitting annotations and without being able to recognize useful primitives that
could be recycled throughout complexity tasks. This fact is highlighted in the comparison
between perceived complexity and eye-tracking-trained models, where similarity scores of
layers close to prediction heads are very different despite the close relationship between the two
complexity perspectives. In conclusion, this work strongly supports the claim that representation
learning in ALBERT and other neural language models is mainly driven by training biases
like task granularity (token-level vs. sentence-level) that are unrelated to the nature of the task
itself. This fact hinders their generalization performances, suggesting that much work still needs
to be done beyond language modeling to drive generalizable, hierarchical, and compositional
representation learning in models of language.
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This final experimental chapter aims to study the syntactic generalization capabilities
of neural language models by evaluating their performances over atypical linguistic
constructions. In particular, architectures pre-trained with masked and causal
language modeling are evaluated in their ability to predict garden-path effects on
three test suites taken from the SyntaxGym psycholinguistic benchmark. First, the
results of previous studies using GPT-2 surprisal to predict garden-path effects are
reproduced, and a conversion coefficient is used to evaluate GPT-2 surprisal in terms
of human reading times delays. Two neural language models are fine-tuned over
gaze metrics from multiple eye-tracking corpora in a multitask token-level setting.
Gaze metric predictions on garden-path sentences are evaluated to see whether gaze
data fine-tuning can improve garden-path effects prediction. Results highlight how
GPT-2 surprisals overestimate the magnitude of MV/RR and NP/Z garden-path
effects, and fine-tuning procedures on gaze metrics prediction over typical linguistic
structures do not benefit the generalization capabilities of neural language models
on out-of-distribution cases like garden-path sentences.

Human behavioral data collected during naturalistic reading can provide useful insights into

the primary sources of processing difficulties during reading comprehension. Multiple cognitive

processing theories were formulated to account for the sources of such difficulties (see Section

1.4). Notably, surprisal theory (Hale, 2001; Levy, 2008) suggests that processing during reading

is the direct result of a single mechanism, that is, the shift in readers’ probability distribution

over all possible parses. To evaluate whether this perspective holds empirically, language models

defining a probability distribution over a vocabulary given previous context (RNNs in Elman

(1991) and Mikolov, Karafiát, et al. (2010), recently Transformers in Hu et al. (2020)) are

commonly used to obtain accurate predictability estimates that can directly be compared to

behavioral recordings (e.g. gaze metrics) acting as proxies of human cognitive processing.

A computational model that consistently mimics human processing behaviors would provide

strong evidence of cognitive processing’s underlying probabilistic-driven nature. For this reason,

many studies in the fields of syntax and psycholinguistics have focused on probing the abilities

of language models to highlight phenomena related to reading difficulties (Linzen, Dupoux,

et al., 2016; Gulordava et al., 2018; Futrell, Wilcox, et al., 2019). Peculiar constructions like

garden-path sentences are often used in this context to evaluate the generalization capabilities

64
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of language models for two main reasons. First, garden-path sentences are rare in naturally-

occurring text. As such, they represent out-of-distribution examples for any language model

trained on conventional data and can be used to test the latter’s generalization capabilities.

Secondly, researchers nowadays have access to reasonably-sized literature describing the impact

of garden-path effects on cognitive processing proxies such as gaze recordings, with articles being

often released alongside publicly-available resources for reproducible evaluation (Prasad et al.,

2019a; Prasad et al., 2019b) and recently even ad-hoc benchmarks (Gauthier, Hu, et al., 2020).

This final experimental chapter evaluates the ability of neural language models in predicting

garden-path effects observed on human subjects, using language modeling surprisal and eye-

tracking metrics elicited respectively before and after multitask token-level eye-tracking fine-

tuning for garden-path effects prediction. Specifically, an autoregressive (GPT-2, Radford et al.

(2019)) and a masked language model (ALBERT, Lan et al. (2020)) are first tested over three

garden-path test suites that are part of the SyntaxGym benchmark to evaluate whether their

language modeling surprisal before and after eye-tracking fine-tuning (ET) can be used to predict

the presence and the magnitude of garden-path effects over disambiguating regions. In particular,

GPT-2 and GPT-2 XL results presented in Hu et al. (2020) are reproduced. Finally, the same

procedure is repeated using predicted eye-tracking scores predicted by models after fine-tuning

instead of language modeling surprisal, following the intuition that an accurate model of gaze

measurements should predict such phenomena correctly.

While the usage of surprisal is a common practice for garden-path effect prediction, leveraging

eye-tracking scores predicted by a neural language model trained for this purpose is a novel

research direction that is deemed interesting as a way to combine the predictive power of modern

language models and the strong connection between cognitive processing and gaze metrics. While

predicted gaze metrics for garden-path evaluation were used in concurrent studies (van Schijndel

et al., 2020), the approach adopted by this work can be regarded as complementary evidence

since eye-tracking metrics predictions are produced as results of an end-to-end supervised fine-

tuning procedure involving a neural language model rather than being derived from surprisal

values through a conversion coefficient. Findings suggest that, while surprisal scores from

autoregressive models accurately reflect garden-path structures both before and after fine-tuning,

gaze metrics predictions produced by fine-tuned models do not account for the temporary

syntactic ambiguity that characterizes such sentences and makes them difficult to process.

Contributions This study validates the performances of standard and gaze-informed Transformed-

based neural language models for garden-path effects prediction. In particular:
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• It reproduces the GPT-2 performances on garden-path test suites reported by Gauthier, Hu,

et al. (2020) and highlights how GPT-2 overestimates reading delays caused by garden-path

effects on MV/RR and NP/Z constructions.

• It highlights masked language models’ inability to consistently predict garden-path effects,

using language modeling surprisal and gaze metrics predictions.

• It introduces a novel gaze metrics multitask token-level fine-tuning approach that, despite

being accurate for predicting eye-tracking scores on standard constructions, does not

improve models’ performances on garden-path effects predictions.

5.1 Experimental Setup

Fine-tuning data As for the gaze metrics model presented in the previous chapter, all eye-

tracking datasets presented in Section 1.3.3 were merged and used to fine-tune neural language

models using the multitask token-level approach described in Appendix C. Only the training

variant without embedding concatenation (referred to as “surprisal” in the appendix) was

evaluated on garden-path test suites given comparable modeling performances.

Models Two variants of GPT-2 having respectively 117 million and 1.5 billion parameters

are evaluated in terms of surprisal-driven predictability, alongside an ALBERT model with 11

million parameters.1 Only the small GPT-2 model and the ALBERT model were fine-tuned

for gaze metric predictions due to limited computational resources.

Evaluation data SyntaxGym (Gauthier, Hu, et al., 2020) is a recently introduced online

platform designed to make the targeted evaluation of language models on psycholinguistic

test suites both accessible and reproducible. The MV/RR and NP/Z test suites containing

garden paths from Futrell, Wilcox, et al. (2019) are used in the context of this work. The

MV/RR test suite consists of 28 groups containing a sentence with a main verb/reduced relative

ambiguity and its non-ambiguous rewritings. In comparison, the NP/Z test suites consist of 24

groups containing a sentence with a nominal/zero predicate ambiguity, produced either by a

misinterpreted transitive use of a verb (Verb Transitivity) or the absence of an object for the

main verb (Overt Object). Examples (3), (4), and (5) from Section 1.4 follow the format used

in the three SyntaxGym test suites used in this work.

1The gpt2, gpt2-xl and albert-base-v2 pre-trained models from transformers (Wolf et al., 2020).
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Start Transitive Verb NP/Z Verb Continuation

Av
g.

 G
P

T-
2 

S
ur

pr
is

al

While the students             ate,                   the food         was removed   
While the students             ate                    the food         was removed
While the students           talked,                the food         was removed
While the students           talked                 the food         was removed

[AMBIG. COMMA]       [AMBIG. NO COMMA]      [UNAMBIG. COMMA]       [UNAMBIG. NO COMMA]

(a) NP/Z Ambiguity (Verb Transitivity)

Start Transitive Verb NP/Z Verb Continuation

Av
g.

 G
P

T-
2 

S
ur

pr
is

al

After the patient               asked,               the nurse                 told              her the news
After the patient           asked                the nurse                 told              her the news
After the patient        asked for meds,       the nurse               told               her the news
After the patient        asked for meds        the nurse               told               her the news

[NO OBJ. COMMA]       [NO OBJ. NO COMMA]      [OBJ COMMA]       [OBJ NO COMMA]

(b) NP/Z Ambiguity (Overt Object)

Av
g.

 G
P

T-
2 

S
ur

pr
is

al

[REDUCED AMBIG]       [REDUCED UNAMBIG]      [UNRED. AMBIG.]       [UNRED. UNAMBIG.]

Noun Ambig. Verb Contents Disambig. End

The business           expanded            into an empire        was sold        for millions
The business              grown               into an empire        was sold         for millions
The business     that was expanded    into an empire        was sold         for millions
The business       that was grown        into an empire        was sold         for millions

(c) MV/RR Ambiguity

Figure 5.1: Average GPT-2 surprisal predictions and examples for the three SyntaxGym test suites. Star
marks the garden-path disambiguator (bold in examples), and bars show 95% confidence intervals.
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5.2 Experimental Evaluation

For the first part of the experiments, the smallest version of the model GPT-2 is used. Figure 5.1

reproduces the original setting tested by Hu et al. (2020), showing how predictability estimates

produced by the model correctly individuate the presence of garden-path effects.2 Surprisal

values are computed using a pre-trained GPT-2 for all tokens in all sentences of the three test

suites. Then, those values are aggregated by summing them across all tokens composing a

sentence region. For example, for the NP/Z Ambiguity test suite entry shown in example (a) the

region “Start” will be associated with the sum of surprisal estimates for all subword tokens in the

sequence While the students. It is important to note that the four variants of the same sentence

have only minimal variations, but only one of those (the underlined one in all examples) is a

garden-path sentence. After computing GPT-2 surprisal scores for all regions of all sentences in

the test sets, those are averaged region-wise across sentences belonging to the same test set to

obtain the three plots presented in Figure 5.1. The star symbol is used to mark the disambiguating

region of garden-path sentences, making evident how predictability estimates are significantly

lower (i.e., higher surprisal values) for those and correctly predict the presence of a garden-path

effect in most settings and for all the three garden-path variants.

5.2.1 Estimating Magnitudes of Garden-path Delays

An important part of evaluating model predictions over garden-path sentences is determining

whether the increase in surprisal scores correctly captures the effect’s magnitude. van Schijndel

et al. (2020) perform this evaluation on RNN language models, finding that they vastly underesti-

mate garden-path effects for MV/RR and NP/Z ambiguities. In their approach, van Schijndel et al.

(2020) estimate the surprisal-to-reading-times conversion rate at 2ms per surprisal bit by fitting a

linear mixed-effect model on relevant factors (surprisal, entropy, word length, among others)

relative to a word and its three preceding words to account for spillover effects. The approach

adopted in this work is different in that it stems from the empirical relation between surprisal

scores produced by GPT-2 and reading times produced by eye-tracking experiments’ participants.

Figure 5.2 presents the median values over words for the ratio between gaze metrics recorded

by participants and GPT-2 surprisal estimates, with the red cross indicating the average median

surprisal-to-metric ratio Cmetric
corpus computed across all participants of a corpus. The following

formula is used to produce the surprisal-to-reading-times conversion coefficient:

CS→RT = w1 ·CFPD
GECO +w2 ·CFPD

Dundee +w3 ·CFPD
ZuCo NR +w4 ·CFPD

ZuCo SR +w5 ·CFPD
ZuCo 2.0 (5.1)

2Similar plots are available on the SyntaxGym website: http://syntaxgym.org/viz/individual

http://syntaxgym.org/viz/individual
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Figure 5.2: Median scores for the ratio between gaze metrics units and GPT-2 surprisal estimates across
all participants of all eye-tracking datasets used in this study. The red cross shows the average across
participants of a single dataset. Units are in ms for durations, % for FXP, and raw counts for FXC.

with w = [.4, .45, .05, .05, .05] being the weighting coefficients representing the proportion of

each corpus’ tokens over the total amount of available gaze-annotated tokens.

The resulting value for the conversion coefficient is 27.7, i.e., each surprisal bit predicted by

GPT-2 accounts for roughly 27.7 milliseconds in first pass duration (30.3ms using TFD). When

applied to the average effects predicted by GPT-2 in Figure 5.1, it leads to an estimated delay of

roughly 64ms for the MV/RR setting and 166ms and 194ms for the NP/Z Ambiguity and NP/Z

Overt Object settings, respectively. These computed delays overestimate the literature’s effects:

Prasad et al. (2019a) and Prasad et al. (2019b), for example, report an average garden-path
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effect of 22ms and 27ms for MV/RR and NP/Z variants, respectively. However, it should be
mentioned that precedent studies found higher delays for NP/Z structures: Grodner et al. (2003)
find a 64ms delay on disambiguating words, and Sturt et al. (1999)‘s delays of 152ms per word
are close to the estimates produced by GPT-2 surprisal predictions. Overall, using models’
surprisal on gaze-annotated sentences to directly compute a conversion coefficient produces
values that correctly identify delays on disambiguating regions and overestimate the magnitude
of garden-path effects conversely to what was found by van Schijndel et al. (2020). Even with an
adjustment of the conversion coefficient to match MV/RR estimates with Prasad et al. (2019a)
findings, the NP/Z effect prediction would still be much larger than the empirically-observed
values collected in comparable settings.

5.2.2 Predicting Delays with Surprisal and Gaze Metrics

The other perspective explored in this study is evaluating whether gaze metric predicted by
models fine-tuned on eye-tracking corpora annotations can correctly estimate the presence and
magnitude of garden-path effects and how they compare to surprisal-driven approaches. Table 5.1
presents the accuracy of multiple pre-trained Transformer-based language models in respecting a
set of three conditions taken from Hu et al. (2020) for each SyntaxGym test suite, namely:

Vd(b)<Vd(a); Vd(c)<Vd(a); Vd(c)−Vd(d)<Vd(a)−Vd(b) (5.2)

Where Vd(a) corresponds to the value, either in terms of surprisal or gaze metrics, assigned
by a model to the disambiguating region d of sentence a, and a,b,c,d are the same sentence’s
variants for each test suite presented in examples (3),(4) and (5) of Section 1.4. Accuracy is
computed as the proportion of items in the test suite on which the language model’s predictions
conform to the respective criterion. The first three models (GPT-2, GPT-2 XL, and ALBERT)
are the pre-trained variants of the three models presented in Table 5.1 without additional fine-
tuning. Instead, the GPT-2 ET and ALBERT ET models correspond to the same GPT-2 and
ALBERT models as before after a multitask token-level fine-tuning on gaze metrics for all the
aggregated corpora. The top part of Table 5.1 shows the five models’ performances while using
region-aggregated surprisals as predictors. Focusing on the GPT-2 variants, it can be observed
that they all achieve considerably high scores on all evaluated conditions. Conversely, ALBERT
masked language models poorly fit the specified criteria. This fact can be intuitively explained
by accounting for the different training and evaluation setup used for the two architectures.
GPT-2 models are likely to produce high surprisal estimates for garden-path sentences since,
processing the input autoregressively and having access only to previous tokens, they incur in
the same syntactic ambiguities faced by human readers.
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Conversely, ALBERT-like masked language models have access to bidirectional contexts
and are not exposed to the ambiguity. It is interesting to observe that while the eye-tracking
fine-tuning procedure appears to hamper GPT-2 surprisal performances, it generally improves
the ALBERT model’s accuracy. This phenomenon may be due to the sequential nature of reading
that is being captured by gaze metrics and transferred to the bidirectional ALBERT model as a
useful bias for sequential processing. The same procedure performs suboptimally, instead, when
associated with an inherently autoregressive model like the GPT-2 decoder

The bottom part of Table 5.1 presents the two ET-trained models’ accuracy in matching
criteria using predicted gaze metrics. For both GPT-2 and ALBERT, it can be observed that gaze
metrics vastly underperform in accuracy terms. We can conclude that, despite the conceptual
relation between gaze metrics and predictability observed in humans, the predictions of fine-
tuned model cannot generalize to unseen settings, and as such eye-tracking predictions obtained

after a fine-tuning on standard constructions do not appear useful to individuate or estimate

the magnitude of garden-path effects. This observation suggests that fine-tuned models stick
to predicting gaze metric values that are the most likely for each specific token, regardless
of the surrounding context’s ambiguities. Plots in Appendix E present the region-aggregated
average scores for all metrics predicted by GPT-2 ET in the same format as before and show how
predictions on the disambiguator regions are unaffected by the presence of previous ambiguities.

5.3 Summary

This chapter focused on two perspectives related to the evaluation of neural language models
for garden-path effects prediction. First, promising results from previous studies using GPT-2
surprisal to evaluate predictability are reproduced, and language modeling surprisal estimates
are converted to reading times using a conversion coefficient. Resulting predictions vastly
overestimate the magnitude of garden-path effects in all settings, suggesting the presence of
additional mechanisms besides predictability in shaping cognitive processing in the presence of
ambiguous constructions like garden-path sentences. This evidence is further supported by the
second experimental perspective, in which reading times for garden-path sentences are predicted
by models fine-tuned on eye-tracking annotations on corpora containing standard constructions.
Results suggest that predicted gaze metrics poorly estimate the presence of garden-path effects
over disambiguating regions, suggesting that fine-tuned models are once again incapable of
out-of-the-box generalization beyond training settings.



Conclusion

This thesis work adopted a model-driven approach to investigate the relationship between
different linguistic complexity perspectives for the English language and study how those are
learned and encoded by deep learning models at various abstraction levels.

From the theoretical viewpoint of connecting different complexity perspectives using empir-
ical annotations, Chapter 3 analysis highlighted the strong connection between online/offline
complexity metrics and length-related linguistic properties of sentences. The relation was
further investigated in length-controlled settings, obtaining similar results across online gaze
measurements but different for offline perceived complexity annotations. The overall results
identify syntagmatic complexity as the primary source of variation in both offline and online
complexity perception for readers. However, they also show how the variety in parts and
hierarchical structures contributes differently across different complexity perspectives when
sentence length is controlled. Another theoretical aspect supported by Chapter 5 experimental
results is the role played by cognitive mechanisms other than predictability in shaping human
processing patterns on ambiguous constructions like garden-path sentences. In this context,
a computational model that accurately predicts the presence or garden-path effects was used
as a psycholinguistic subject to provide predictability annotations on standard and atypical
constructions. A surprisal-to-reading-times conversion coefficient was then estimated from gaze
annotations and surprisal scores on standard constructions. The resulting reading times were used
to highlight how the model widely overestimated the magnitude of garden-path effects, following
the methodology of van Schijndel et al. (2020). While results differ significantly from the latter
study due to a much larger conversion coefficient, the presence of different accounts for cognitive
processing is supported when considering how proportions in predicted magnitudes on different
types of constructions do not match the ones reported in recent psycholinguistics literature.

Despite interesting theoretical findings, this work is mostly devoted to interpreting complexity
phenomena from a modeling standpoint. Chapter 3 evaluates the encoding of linguistic properties
inside neural language models’ representations using probing tasks performed before and after
model fine-tuning on complexity-related tasks. Results highlighted the emergence of task-related
linguistic properties within the model’s representations after the fine-tuning process, providing
evidence for the relation between models’ linguistic skills during training and their performances
on morphosyntactically-related tasks. In light of these findings, it can be conjectured that
linguistic probes may provide a reasonable estimate of the task-oriented quality of representations
for those highly-syntactic tasks. In Chapter 4, the representations learned by neural language
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models were compared across layers and fine-tuning tasks using representational similarity

approaches. The absence of higher similarity scores between complexity-trained models

compared to the pre-trained one suggests that training objectives are learned by overfitting

annotations and that learned parameters hardly capture information that could be relevant

for multiple complexity-related tasks.

Moreover, task framing and the annotation modalities were observed to play a much larger

role in defining representational similarity scores rather than the conceptual similarity between

tasks. This fact supports the claim that standard optimization procedures used in deep learning

are not suitable for this type of concept-driven learning. Finally, Chapter 5 highlighted the

inability of standard neural language models in leveraging syntactic cues to improve prediction

in the context of garden-path effects. Models fine-tuned on gaze annotations were tested on

garden-path test suites to evaluate whether reading time predictions can perform as well as

surprisal in identifying garden-path triggers. Results highlight how models heavily overfit gaze

annotation and cannot predict the increase in reading times observed in human subjects despite

being exposed to the temporary syntactic ambiguity that characterizes garden-path constructions.

Recent trends in transfer learning have profoundly shaped the last few years of research

in NLP, leading to astonishing improvements in almost all language-related tasks, including

linguistic complexity prediction. Despite all the hype, the fundamental problem behind all

computational linguistics research remains: even the most powerful deep learning models do not

“understand” language, and their learned representations are “potentially useful, but incomplete,

reflections of the actual meaning” they derive from structural training procedures (Bender et al.,

2020). In support of this affirmation, all models leveraged in this study by following closely

standard procedures were found lacking in generalization capabilities and hierarchical abstraction,

despite their excellent performances on predicting in-domain observations. To conclude with a

somewhat cliché affirmation, much work still needs to be done to drive generalizable, hierarchical,

and compositional representation learning in language models, enabling proper human-level

natural language understanding.

Broader Impact and Ethical Perspectives

The findings described in this thesis work are mostly meta-analytical, and as such, mostly in-

tended to distill theoretical insights and evaluate recent efforts in the natural language processing

community. This said, some of the models and procedures described in this work can be clearly

beneficial to society. For example, using models trained to predict reading patterns may be

used in educational settings to identify difficult passages that can be simplified, improving

reading comprehension for students in a fully-personalizable way. This type of technology can
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also be applied to domain-specific documents such as juridical or medical reports to identify

critical areas that can be adapted to improve layman’s understanding. However, it is essential

to recognize the potentially malicious usage of such systems. The integration of eye-tracking

systems in mobile devices, paired with predictive models presented in this work, could be used

to build harmful surveillance systems and advertisement platforms using gaze predictions for

extreme behavioral manipulation. Moreover, multiple individuals’ gaze data could be leveraged

by autonomous systems to enforce discriminatory practices towards neurodiverse subjects in

hardly-detectable ways. In terms of research impact, the experiments presented in this work may

provide useful insights into the behavior of neural language models for researchers working in

the fields of interpretability in NLP and computational psycholinguistics.

Future Directions

In conclusion, multiple paths to improve and extend the scope of this work were identified during

the experimental process, and will be left here as a final note for my future self and for anyone

interested in pushing forward research in fields related to this thesis’ topics.

• Self-training has recently proven to be very effective for compensating the lack of large

labeled datasets in the context of acceptability and complexity prediction (Sarti, 2020). In

light of these results, it would be interesting to evaluate whether self-training could also

improve the performances and generalization of models used for gaze metrics prediction.

• Evaluate whether gaze-trained neural language models having undergone a cloze distilla-

tion process (Eisape et al., 2020), combining intuitions from masked language modeling

and knowledge distillation (Hinton et al., 2015), would produce better results for modeling

out-of-distribution garden-path phenomena compared to the somewhat naive approach

adopted in this study.

• Incorporating gaze metrics prediction in the training objectives of learning models can

be interesting to account for human cognitive biases during reading. The crucial aspect

is how to get a sufficient amount of annotated data to make this idea scalable for modern

language models’ pre-training needs. In this regard, it could be interesting to test the

approach by Hollenstein and Zhang (2019) where mean gaze scores are averaged for each

type across annotators, effectively providing a way to label input sentences with robust

gaze information in an unsupervised manner.
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• Since eye-tracking metrics are complexity signals with free human supervision, it could
be possible to leverage those for simplification and other related tasks in an iterative
learning-from-human-feedback paradigm similar to the one described in Stiennon et al.
(2020).

• It should in principle be possible to use human processing data as a replacement for the
self-attention computation. The dot product critically bounds the computational efficiency
of attention-based models, and fixed attention has been shown to have a limited negative
impact on final results while making inference much faster (Tay et al., 2020). Fixing
attention weights using human attention, as measured by eye-tracking metrics, can be an
exciting perspective to explore in this context. This idea can be thought of as an application
of human attention regularization of LSTM attentional networks for various tasks proposed
in Barrett, Bingel, Hollenstein, et al. (2018) to Transformers networks.

• Would explicitly embedding complexity in the learning process of language models favor
hierarchical abstraction? In this perspective, it would be exciting to evaluate whether a
model trained on easy-to-hard sentences following language acquisition insights would
encode different knowledge in terms of linguistic structures, concept abstraction, and
allowances.

• Finding better ways to instill useful inductive biases into learning models, especially for
syntax-heavy downstream tasks. Concrete examples following this direction may use
parsing as a complementary task to keep top-level representations sensible to syntactic
changes, as tested in Glavas et al. (2020) for natural language understanding, or use hybrid
symbolic-neural models to represent syntax as in Zanzotto et al. (2020).
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A | Linguistic Features

The following list of features was used in the context of Chapter 3 experiments and is a

summary of the full set of features presented in Brunato, Cimino, et al. (2020):

A.1 Raw Text Properties and Lexical Variety

• Sentence length (n_tokens): Length of the sentence in terms of number of tokens.

• Word length (char_per_tok): Average number of characters per word in a sentence,

excluding punctuation.

• Type/Token Ratio for forms and lemmas (ttr_form, ttr_lemma): Ratio between the

number of lexical types and the number of tokens within a sentence.

A.2 Morpho-syntacting Information

• Distribution of grammatical categories (upos_dist_*, xpos_dist_*): Percentage distribu-

tion in the sentence of the 17 core part-of-speech categories present in the Universal POS

tagset (adjective, adverb, interjection, noun, proper noun, verb, adposition, auxiliary,

coordinating conjunction, determiner, numeral, particle, pronoun and subordinating

conjunction, punctuation, and symbols).

• Lexical density (lexical_density): Ratio of content words (verbs, nouns, adjectives, and

adverbs) over the total number of words in a sentence.

• Inflectional morphology (aux_mood_*, aux_tense_*): Percentage distribution in the

sentence of a set of inflectional features (Mood, Number, Person, Tense and Verbal Form*)

over lexical verbs and auxiliaries of each sentence.

A.3 Verbal Predicate Structure

• Distribution of verbal heads (vb_head_per_sent): Number of verbal heads in the sen-

tence, corresponding to the number of main or subordinate clauses co-occurring in it.
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• Distribution of verbal roots (dep_dist_root): Percentage of verbal roots out of the total
sentence roots.

• Verb arity (verb_arity): Average number of dependency links sharing the same verbal
head per sentence, excluding punctuation and copula dependencies.

A.4 Global and Local Parsed Tree Structures

• Syntactic tree depth (parse_depth): Maximum syntactic tree depth extracted for the
sentence, i.e., the longest path in terms of dependency links from the root of the dependency
tree to some leaf.

• Average and maximum length of dependency links (avg_links_len, max_links_len)

• Number and average length of prepositional chains (n_prep_chains, prep_chain_len),
with the latter expressed in number of tokens.

• Subject-object ordering (subj_pre, subj_post, obj_pre, obj_post): Relative order of the
subject and object arguments with respect to the verbal root of the clause in the sentence.

A.5 Syntactic Relations

• Distribution of dependency relations (dep_dist_*): Percentage distribution of the 37
universal relations in the UD dependency annotation scheme.

A.6 Subordination Phenomena

• Distribution of main and subordinate clauses (princ_prop_dist, sub_prop_dist): Per-
centage distribution of main vs subordinate clauses in the sentence.

• Relative ordering of subordinates (sub_pre, sub_post): As for subjects and objects,
whether the subordinate occurs in pre-verbal or post-verbal position in the sentence.

• Average length of embedded subordinates (sub_chain_len): Average length of subordi-
nate clauses recursively embedded into each other to form a subordinate chain.

Readers are referred to the original paper by Brunato, Cimino, et al. (2020) and the Profiling-
UD webpage1 for additional details on linguistic features.

1http://linguistic-profiling.italianlp.it

http://linguistic-%20profiling.italianlp.it


B | Precisions on Eye-tracking Metrics and
Preprocessing

Table B.1: Eye-tracking mappings from dataset-specific fields to the shared set of metrics.

Metrics Dundee GECO ZuCo 1 & 2

First fix. dur. (FFD) First_fix_dur FIRST_FIXATION_DURATION FFD
First pass dur. (FPD) First_pass_dur GAZE_DURATION GD
Fix. prob. (FXP) Fix_prob ¬ WORD_SKIP FXC > 0
Fix. count (FXC) nFix FIXATION_COUNT FXC
Tot. fix. Dur. (TFD) Tot_fix_dur TOT_READ_TIME TRT
Tot. Regres. Dur. (TRD) Tot_regres_from_dur GO_PAST - SEL._GO_PAST GPT - GD

Univocal gaze metrics conversion Table B.1 present the conversion scheme used to obtain
a unified set of eye-tracking metrics from different corpora annotations. This method follows
closely the approach adopted by Hollenstein and Zhang (2019). While the mapping is straightfor-
ward for shared metrics, the TRD metric needs to be computed for GECO and ZuCo. For GECO,
the difference between go-past time (i.e. total time elapsed between the first access of a word
boundary and the first access of subsequent words, including regressions) and its selective variant
(i.e. go-past time only relative to the specific word, without accounting for regressions) gives an
exact conversion to regression duration. Instead, in the ZuCo case, an approximate conversion
using gaze duration (i.e. first pass duration) instead of selective go-past time is used since
selective go-past time is not provided. ZuCo’s TRD estimate should be deemed an upper bound
for regressions’ duration since gaze duration is always smaller than the selective go-past time
when regressions are present and is precisely equal to it in the complete absence of regressions.

Averaging across participants Gaze metrics are averaged across participants for all experi-
ments of this thesis work. Metrics missing for some participants due to skipping are replaced
with the lowest recorded value across participants for that word before averaging. This procedure
is preferred to zero-filling missing values since the latter produces significant drops in metrics
associated with tokens skipped by multiple participants, making averaged values inconsistent
with empirical observations.
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C | Multi-task Token-level Regression for
Gaze Metrics Prediction

Natural language (processing) is passionating!
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Figure C.1: Multi-task token-level regression on eye-tracking annotations. Preceding punctuation is
removed (1), and the sentence is tokenized while keeping track of non-initial tokens (2). Embeddings are
fed to the ALBERT model (3), and non-initial representations are masked to ensure a one-to-one mapping
between labels and predictions (4). Finally, task-specific prediction heads are used to predict gaze metrics
in a multitask setting with hard parameter sharing (5).

A multitask token-level regression fine-tuning approach was adopted throughout this study to
predict eye-tracking metrics using neural language models. This novel approach’s choice stems
from the fact that the regression task of predicting gaze metrics is inherently word-based given the
granularity of eye-tracking annotations and that different gaze metrics provide complementary
viewpoints over multiple stages of cognitive processing and can as such be modeled more
precisely in a multitask learning setting. Figure C.1 presents the model’s training and inference
procedure, closely matching other approaches used to train neural language models for sequence
tagging tasks like POS tagging and named entity recognition.

The most defining detail in the procedure is the need to preserve an exact one-to-one
mapping between input words and gaze metrics annotations, which is non-trivial in light of
subword tokenization approaches that represent nowadays the de facto standard for training
modern neural language models. To enforce such mapping, two steps are taken. First, all initial
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punctuation (e.g. the open parenthesis before processing in Figure C.1 example) is removed
to make the initial subword token for that word (i.e. the one preceded by whitespace) equal
to the word’s first characters. Then, all non-initial subword tokens are identified in step (2),
and their respective embeddings are masked in step (4) before passing the remaining initial
embeddings (one per whitespace-tokenized word at this point, as for gaze metrics) to the set of
prediction heads responsible for inferring individual gaze metrics. While this procedure can be
regarded as suboptimal since not all learned representations are used for prediction, it is essential
to remember that all the embeddings produced by attention-based neural language models are
contextualized and encode information about the entire sentence and surrounding context to
some extent. In this sense, initial token embeddings can be trained in this setting to predict
gaze metrics relative to the whole word, effectively bypassing the issues about information
loss raised by the masking procedure.

Another important detail in the training and inference procedure is the standardization of
metrics, which plays a key role in this setup due to the different ranges of different metrics
(e.g. fixation probability is always defined in the interval [0,1], while gaze durations are integers
in the scale of hundreds/thousands of milliseconds). Specifically, considering the set X of values
assumed by a specific metric for all tokens in the eye-tracking datasets, the average µX and
standard deviation σX of those values are computed, and each value is transformed as:

X ′i =
Xi−µX

σX
(C.1)

to produce a new range X ′ with average equal to 0 and standard deviation equal to 1. Predicted
values are then reconverted to the original scale as Xi = (X ′i ·σX)+µX when performing inference,
and training and testing metrics are computed on each metric’s original scale.

Spillover concatenation Cognitive processing literature reports evidence of reading times for
a word being shaped not only by the predictability of the word itself but also by the predictability
of the words that precede it (Smith et al., 2013) in what is commonly referred to as the spillover

effect (Mitchell, 1984). The existence of spillover has important implications in the context of
this gaze metrics prediction approach since the embeddings for a single word may not contain
enough information to predict the influence of preceding tokens in shaping reading behaviors.
Notably, van Schijndel et al. (2020) include the surprisal of the three previous words in a
mixed-effect model used to estimate a surprisal-to-reading-times conversion coefficient. While
it can be hypothesized that in this approach, the usage of contextualized word embeddings can
automatically account for this type of interaction, the effect of leveraging preceding tokens for
the current token’s metric prediction is assessed to confirm this hypothesis. A new procedure
defined as spillover concatenation is introduced for this purpose, in which token embeddings
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Figure C.2: Validation total loss for GPT-2 and ALBERT over a split of the eye-tracking merged corpora
with and without spillover concatenation. Model predictive performances were comparable across training
and testing for the two models.

are augmented by performing a rolling concatenation of the n preceding embeddings before

feeding the final representation to prediction heads. Initial tokens are padded with 0 vectors

to match the fixed size defined by embedding size and the n parameter. For example, using

spillover concatenation with n = 3 within a BERT model with a hidden size of 768 involves

having prediction heads taking input size of 768 ·(3+1) = 3072, the size of the token embedding

for which gaze metrics should be predicted plus the size of the three preceding token embeddings.

In this way, information about preceding tokens is explicitly included at prediction time.

Figure C.2 shows the validation losses during training for the two models used in the

experiments of Chapter 5 with their counterparts using spillover concatenation. Model perfor-

mances are not positively influenced by introducing the concatenation technique and remain

very similar for both architectures.

Model performances Table C.1 presents the test performances of ALBERT and GPT-2 models

trained with and without the spillover concatenation approach on the merge of all eye-tracking

corpora. The top two rows present descriptive statistics about extreme values, the mean and

standard deviation in annotations averaged across participants for each metric. It is interesting to

observe that the maximum value observed for first pass duration (FPD) is higher than the one

for total fixation duration (TFD). While this situation would not be possible in practice due to

first pass duration being included in total reading times, it reminds us about the approximate

nature of our filling-and-averaging procedure described in Appendix B. Comparing results to

those of Table 3.2, where gaze metrics were modeled at the sentence level, we observe much
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worse results in terms of explained variance for both models: while fixations and first pass
duration (FXC, FXP, FPD) are generally well modeled, worse results are obtained for first and
total fixation durations (FFD, TFD), and in particular for the duration of regression (TRD). These
results can be attributed to the merging of different corpora that, being annotated by different
participants, present very different properties, as shown in Table 1.4 and Figure 5.2. While
on the one hand, this choice harms modeling performances, on the other hand, it provides us
with more representative results for the general setting.

Table C.1: Descriptive statistics and model performances for the merged eye-tracking training corpus.
Model scores are in format RMSEMAX|R2, where RMSE is the root-mean-squared error and MAX is the
max error for model predictions.

FFD FPD FXP FXC TFD TRD

min-max value 0−986 0−2327 0−1 0−8.18 0−1804 0−4055
µ|σ statistics 162|50 188|86 .56|.27 .85|.53 206|87 90|122
ALBERT 4178|.33 61121|.50 .17.32|.60 .31.62|.66 65132|.44 110207|.19
ALBERT Spillover 4178|.33 61122|.50 .17.33|.60 .31.62|.66 65132|.44 110208|.19
GPT-2 4483|.23 68136|.37 .18.35|.56 .36.70|.54 74149|.28 115222|.11
GPT-2 Spillover 4383|.26 68135|.37 .19.35|.50 .36.70|.54 73146|.30 116220|.10

In general, better performances are observed for the masked language model ALBERT,
suggesting the importance of having access to bidirectional context for gaze metrics prediction.
Results present additional evidence supporting the superfluity of the spillover concatenation
procedure, which was henceforth dropped in the context of Chapters 4 and 5’s experiments.
Although good scores in terms of average and maximal errors are observed for all metrics, the
relatively low R2 seem to suggest that large margins of improvement are still available in the
context of gaze metrics predictions with neural language models.



D | Intra-model Similarity for All Models

(a) RSA score, CLS token (b) PWCCA distance, CLS token

(c) RSA score, tokens’ average (d) PWCCA distance, tokens’ average

(e) RSA score, all tokens (f) PWCCA distance, all tokens

Figure D.1: Intra-model RSA and PWCCA scores across layers’ combinations for the ALBERT model
fine-tuned on perceived complexity (PC). Layer -1 is the last layer before prediction heads.
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(a) RSA score, CLS token (b) PWCCA distance, CLS token

(c) RSA score, tokens’ average (d) PWCCA distance, tokens’ average

(e) RSA score, all tokens (f) PWCCA distance, all tokens

Figure D.2: Intra-model RSA and PWCCA scores across layers’ combinations for the ALBERT model
fine-tuned in parallel on gaze metrics (ET). Layer -1 corresponds to the last layer before prediction heads.
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(a) RSA score, CLS token (b) PWCCA distance, CLS token

(c) RSA score, tokens’ average (d) PWCCA distance, tokens’ average

(e) RSA score, all tokens (f) PWCCA distance, all tokens

Figure D.3: Intra-model RSA and PWCCA scores across layers’ combinations for the ALBERT model
fine-tuned on readability assessment annotations (RA). Layer -1 corresponds to the last layer before
prediction heads.



E | Gaze Metrics Predictions for Garden
Path Sentences

F
F

D
F

P
D

F
X

C
F

X
P

T
F

D
T

R
D

Start Transitive Verb NP/Z Verb Continuation

0

100

200

300

400

0

100

200

300

400

0

1

2

0.0

0.5

1.0

1.5

0

100

200

300

400

500

0

25

50

75

100

A
vg

. G
P

T
−

2 
ga

ze
 m

et
ric

 p
re

di
ct

io
n 

pe
r 

ca
te

go
ry

[AMBIG. COMMA] [AMBIG. NO COMMA] [UNAMBIG. COMMA] [UNAMBIG. NO COMMA]

Figure E.1: Average GPT2-ET gaze metrics predictions for the “NP/Z Ambiguity with Verb Transitivity”
SyntaxGym test suite. Bars show 95% confidence intervals. Units are in ms for durations, % for FXP, and
raw counts for FXC.
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Figure E.2: Average GPT2-ET gaze metrics predictions for the “NP/Z Ambiguity with Overt Object”
SyntaxGym test suite. Bars show 95% confidence intervals. Units are in ms for durations, % for FXP, and
raw counts for FXC.
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Figure E.3: Average GPT2-ET gaze metrics predictions for the “MV/RR Ambiguity” SyntaxGym test
suite. Bars show 95% confidence intervals. Units are in ms for durations, % for FXP, and raw counts for
FXC.



F | Reproducibility and Environmental
Impact

Table F.1: Variable training parameters used in the experiments of this study. MTL stands for multitask
learning.

Chapter 3 Chapter 4 Chapter 5

PC ET Probes PC ET RA ALBERT GPT-2

fine-tuning standard MTL MTL standard MTL standard MTL MTL
granularity sent. sent. sent. sent. word sent. word word
freeze LM w 7 7 3 7 7 7 7 7
weighted loss - 3 7 - 7 - 7 7
CV folds 5 5 5 - - - - -
early stopping 3 3 7 3 3 3 3 3
training epochs 15 15 5 15 15 15 15 15
patience 5 5 - 5 5 5 5 5
evaluation steps 20 40 - 20 100 80 100 100

Tools Experiments were executed on a Ubuntu 18.04 LTS server, using a NVIDIA K40 GPU

with 12GB RAM and CUDA 10.1. Relevant Python libraries used throughout the study with

their respective versions are: transformers 2.11.0 for accessing pre-trained Transformer

language models, farm 0.4.5 for multitask learning, torch 1.3.0 as a backed for deep

learning, and syntaxgym 0.5.3 for Chapter 5 experiments. Python 3.6.3 was used for all

training scripts. A custom adaptation of the Oxforddown template was used for this thesis.1

Code for reproducibility purposes is available at the address https://github.com/gsarti/

interpreting-complexity.

Model Training Table F.1 present the set of variable training parameters used in all the

experiments of this study. Besides those, a set of fixed parameters was also used: all experiments

were performed using a batch size of 32 observations, a maximum sequence length of 128

tokens, a linear training schedule with one-tenth of total steps used as warmup steps, the AdamW

optimizer (Loshchilov et al., 2019) with weight decay equal to 0.01, and a learning rate of 10−5.

No hyperparameter search was performed due to time limitations.

1https://github.com/AI-Student-Society/thesisdown-it
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Tokenization All tokenizers used in the experiments used cased text and were based respec-
tively on the SentencePiece approach (Kudo et al., 2018) for ALBERT and a custom version of
Byte-Pair Encoding tokenization (Sennrich et al., 2016) with token-like whitespaces for GPT-
2. Default AlbertTokenizer and GPT2Tokenizer classes available in the transformers
library with pretrained tokenizers were used for this purpose. The vocabulary used by those
had size 30’000 for ALBERT and 50’257 for GPT-2, including special tokens.

Architecture The default parameters for the transformers checkpoints of ALBERT and
GPT-2 (specifically, albert-base-v2 and gpt2 in the Model Hub) were used for this study.
Concretely, this means embeddings and hidden sizes of 128 and 3072 for ALBERT and tied
embedding-hidden size of 768 for GPT-2, 12 transformer blocks using 12 heads for multi-
head self-attention each, and a smoothed variant of the Gaussian Error Linear Unit (GELU)
as nonlinearity (Hendrycks et al., 2016). GPT-2 has an embedding and attention dropout rate
of 0.1 and a layer normalization (Ba et al., 2016) epsilon of 10−5, while ALBERT employs a
classifier dropout rate of 0.1 and a layer normalization epsilon of 10−12.

CO2 Emissions Related to Experiments Experiments were conducted using the private
infrastructure of the ItaliaNLP Lab2 at the Institute for Computational Linguistics “A. Zampolli”
(ILC-CNR) in Pisa, which has an estimated carbon efficiency of 0.321 kgCO2eq/kWh (Moro
et al., 2018). A cumulative of roughly 100 hours of computation was performed on a Tesla K40
GPU (TDP of 245W). Total emissions are estimated to be 7.86 kgCO2eq. Estimations were
conducted using the Machine Learning Impact Calculator3 presented in Lacoste et al. (2019).

In-detail reports of all experimental runsre produced automatically using the MLFlow4

tool and are available at the following address: https://public-mlflow.deepset.ai/#/
experiments/99.

2https://www.italianlp.it
3https://mlco2.github.io/impact#compute
4https://mlflow.org/

https://public-mlflow.deepset.ai/#/experiments/99
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