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Abstract 

Pre-trained language models such as BERT (Bidirectional Encoder 

Representations from Transformers) have achieved state of the art performances 

in NLP. The success of such models is due to the contextualized vector 

representations of language, also known as embeddings, they are able to 

generate and that have attracted much attention from researchers. In fact, pre-

trained language models suffer from low interpretability, meaning that is it 

difficult to identify the pieces of information encoded in their embeddings, and 

where and how they are encoded. The aim of this work is to probe the vector 

representations extracted from BERT to understand whether it captures some 

information related to one linguistic phenomenon in particular, metonymy.  
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«The complete meaning of a word is always contextual, 

and no study of meaning apart from context can be taken seriously» 

 

(John Rupert Firth) 
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1. Introduction 

Natural Language Processing (NLP) applications have achieved high levels of 

efficiency and accuracy on a number of natural-language-related tasks, mainly 

due to the exceptional quality of the language representations some models are 

able to create. With the growing success and interest in the deep neural networks 

responsible for such achievements, comes an equally growing curiosity towards 

what makes these performances possible. In fact, these deep language models, 

often belonging to the family of the Transformers (Vaswani et al., 2017), create 

vector representations of language that are not interpretable by humans. The 

need to understand how they carry out predictions and why they make some 

choices instead of others has started a series of research explorations, known as 

probing tasks, of their representations aimed at identifying what linguistic 

information they capture, how they encode it and where it is encoded in their 

embeddings.  

The probing methodology consists in taking vector representations and 

performing a classification task with respect to some information. The idea is 

that the task can only be successful if the information at issue is present in the 

representation and is available for the classifier to use to distinguish different 

classes. This has been done for many aspects of natural language, from text 
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structure to syntactic and semantic information (see Section 2.2. for probing 

tasks). It is particularly interesting to explore to what extent and how language 

models capture information related to sematic composition, that is to say how 

the meaning of words changes when these are combined with other context 

words.  

The aim of this work is to find whether pre-trained language models are able to 

capture and encode the meaning shift brought by metonymy (Section 3.), a 

linguistic phenomenon for which meaning changes in context and that occurs 

when the name of an entity is used to refer to another entity to which it is in 

some way closely related. To do so, a new dataset was created that includes 

examples for a variety of occurrences of metonymy. The vector representations 

of the sentences in the dataset are extracted from a pre-trained language model 

and given as input to the probing classifier.  

Each different phase of the work, from the study of literature on metonymy to 

the creation of the dataset and the results of the probing task, finds a 

corresponding section in this thesis: Section 2. provides an introduction to the 

state of the art in NLP, in particular to word and sentence embeddings (Section 

2.1.) and probing tasks (Section 2.2.); Section 3. describes metonymy (Section 

3.1.) and the existing datasets for the linguistic phenomenon (Sections 3.2. and 

3.3.); Section 4. retraces the creation of a new dataset for metonymy, specifically 
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the types of metonymy included (Section 4.1.), the collection and annotation 

(Section 4.2.) and the validation of data (Section 4.3.), the collection and 

annotation of negative examples (Section 4.4.) and the complete dataset 

statistics (Section 4.5.); Section 5 is dedicated to the experiments, with a brief 

introduction to the pre-trained language model and the probing classifier 

(Section 5.1.), and a description of the different test sets (Section 5.2.), the 

probing classification task (Section 5.3.), the performances of the classifier 

(Section 5.4.) and the analysis of results (Section 5.5.). 
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2. State of the Art 

In the last years, the field of Natural Language Processing (NLP) has seen many 

exciting progresses that have captured the attention of the whole Artificial 

Intelligence (AI) community. The availability of big amounts of textual data, as 

well as an approach that exploits probabilistic and statical methods, has played 

a fundamental role in supporting the growth of these disciplines (Lenci et al., 

2016). Johnson (2009) observes how the statistical revolution has influenced 

change in Computational Linguistics in the last decades of the twentieth century, 

leading the process that substituted a grammar-based approach, which used a set 

of rules or grammars manually defined, with a model-based one, which relies 

on probabilistic and statistical methods.  

The aim of this section is to provide an introduction to the state-of-the-art 

(SoTA) panorama for NLP, presenting the models that make full use of both the 

large availability of data and statistical methods, and that have reached 

impressive performances in many NLP tasks. Section 2.1. focuses in particular 

on word and sentence embeddings, the fundamental information-bearing 

components for any NLP task; Section 2.2. describes their interpretability issues 

and a method to explore them. 
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2.1. Word and sentence embeddings 

Distributional semantics (DS) is a usage-based model of meaning that provides 

multi-dimensional and graded word representations that capture many aspects 

of meaning in natural language (Lenci, 2018; Boleda, 2020). The idea is that the 

semantic behaviour of linguistic items is highly dependent on their statistical 

distribution in context. In fact, distributional models create semantic 

representations for words using their co-occurrences extracted from corpora. 

The model is based on the Distributional Hypothesis, which lies on the 

observation that similarity in meaning corresponds to similarity in linguistic 

distribution (Harris, 1954).  

A distributional representation is a vector representing the co-occurrence of a 

word with linguistic contexts. Words that occur in similar contexts are expected 

to have similar meanings and are therefore close in the vector space. For 

example, the representations for cat and dog are expected to be closer in the 

distributional space than the vectors for cat and truck.  

Distributional semantics builds upon the vector space model in information 

retrieval (Salton et al., 1975), in which a collection of documents is represented 

as a matrix whose columns are vectors corresponding to documents and rows 

are vectors corresponding to lexical items, and in which each matrix entry 
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registers the occurrences of a word in a document. Distributional Semantic 

Models, instead, project text in a vector space where each word is represented 

as a word embedding, a vector whose components encode the distribution of the 

word in the different contexts (Lenci, 2018). 

Word embeddings are a key ingredient to carry out any NLP task, the 

performance of which depends on the quality of such representations. These can 

be built using co-occurrence matrices, as seen above, or neural networks able to 

extract features from the text they are encoding in un unsupervised way. Deep 

neural networks, so called because of their architecture composed of multiple 

hidden layers, can obtain pre-trained word embeddings that can be exploited in 

other NLP tasks by autonomously extracting features from the corpora used in 

the training phase.  

The efficiency of static word embeddings extracted by distributional models 

based on unsupervised algorithms such as Word2Vec (Mikolov et al; 2013), 

GloVe (Pennington et al.; 2014) or FastText (Bojanowski et al.; 2017) was 

questioned due to their inadequacy to capture semantic polysemy or meaning 

shifts, which occurs when a word takes different meanings in different contexts.  

Distributional semantic models, indeed, represent the meaning of a lexical item 

through a single vector representation that in some sense compresses its whole 



11 
 

distributional history. In other words, all senses of a polysemous word must 

share a single vector.  

The recent introduction of deep neural architectures for language modelling has 

captured great interest for the SoTA results achieved in many NLP task thanks 

to the word representations they are able to create. These are contextualized 

word embeddings, as the ones created by ELMo (Embedding from Language 

Models; Peters et al., 2018), GPT (Generative Pre-Training, Radford et al., 

2018) and its later versions GPT-2 (Radford et al., 2019) and GPT-3 (Brown et 

al., 2020), and BERT (Bidirectional Encoder Representations from 

Transformers, Devlin et al., 2019), deep neural language models that are fine-

tuned to create models for a number of NLP tasks. These models compute 

dynamic word embeddings for words given their context sentence, and therefore 

largely address polysemy. Contextualized word representations are context-

sensitive and generally perform better than static ones on tasks related to lexical 

composition and meaning shift (Shwartz and Dagan, 2019).  

ELMo creates deep context-dependent representations of each token by 

concatenating the internal states of a 2-layer biLM (bidirectional language 

model) pre-trained on a large text corpus (Peters et al., 2018). Unlike traditional 

word embeddings as the ones presented above, the ELMo vector for a word is a 

function of the entire sentence it is contained in, which means that in different 
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contexts the same word can have different representations. BERT and GPT-2 

are bi-directional and uni-directional transformer-based language models 

respectively. Much of the recent progress in NLP can be attributed to a neural 

network architecture called Transformer, a model architecture that relies on the 

attention mechanism introduced in the paper ‘Attention is all you need’ 

(Vaswani et al., 2017). A Transformer has an encoder-decoder structure in 

which the attention mechanism is used to pass a more complete picture of the 

whole sequence rather than one element at the time to the decoder. 

Contextualized word representations of each token are created by each 

transformer layer by attending to different parts of the input sentence (Devlin et 

al., 2019; Radford at al., 2019).  

However, language representations also have to account for issues related to 

semantic compositionality, which is the human ability to compose lexical 

meanings to create a potentially unlimited number of complex linguistic 

expressions (Lenci, 2018). The most common compositional approach in DS is 

to use linear-algebraic operations to project lexical vectors to phrase vectors. 

Vector addition (Landauer and Dumais, 1997) is the simplest form of vector 

composition. Simple additive and multiplicative methods are better than more 

complex distributional methods for semantic compositionality (Blacoe and 

Lapata 2012), even though they are still not fully adequate as vector addition 
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models are unable to account for syntax and multiplicative models make no 

distinction between the constituents they combine (Mitchell and Lapata, 2010).  

Other approaches use unsupervised neural models such as Skip Thought (Kiros 

et al., 2015), an encoder-decoder model. It abstracts the Skip-Gram model, an 

algorithm of Word2Vec (Mikolov et al; 2013) which uses a word to predict its 

surrounding context, to the sentence level and encodes a sentence to predict the 

sentences around it. The sentence embeddings generated by supervised 

algorithms were only recognized as valuable since the publication of a work by 

Conneau et al. (2017), when the InferSent method was presented. The latter was 

trained on the Stanford Natural Language Inference corpus (SNLI) (Bowman et 

al., 2015) and outperformed the Skip-Thought vectors, showing that models 

learned on natural language inference (NLI) can perform better than models 

trained in unsupervised conditions.  

The Universal Sentence Encoder proposed by Google (Cer et al., 2018) 

combines the strategies of both Skip-Thought (Kiros et al., 2015) and InferSent 

(Conneau et al. (2017): the sentence-encoding model is based on a Transformer 

architecture (Vaswani et al., 2017) that uses attention to compute context-aware 

representations of words in a sentence. The multi-task learning includes a 

SkipThought like task for the unsupervised learning from arbitrary running text, 

and classification tasks for training on supervised data. 
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Recently, large pre-trained language models such as BERT (Devlin et al., 2018) 

have been used to extract representations of natural language, achieving a new 

state-of-the-art performance level on sentence-pair regression tasks like 

semantic textual similarity (STS) (Reimers and Gurevych, 2019). One of the 

methods implemented to extract sentence-level information is to use mean or 

maximum pooling, which is to consider the average or maximum value across 

each of the 512 dimensions in the hidden state embeddings. Another one is to 

select the first vector of the hidden state as the class token which represents the 

sequential information of the embedding sequence. This method will be used to 

extract the sentence embeddings for the work described in Section 5. The same 

can be done with GPT-2 (Radford et al., 2019), with the only difference that the 

sequential information is encoded in the last token of the embedding sequence 

because of the uni-directional self-attention mechanism.  

 

2.2. Probing task 

An issue with pretrained language models is their low interpretability, defined 

by Miller (2019) as the degree to which a human can understand the cause of a 

decision, and by Been et al. (2016) as the degree to which a human can 

consistently predict the model's result. Deep neural networks, which have 
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achieved near-human levels of accuracy in different type of prediction and 

classification tasks, are treated mostly as black-box function approximators that 

map a given input to a classification output (Chakraborty et al., 2017; Ribeiro et 

al., 2016). It is important, however, to provide human-understandable 

justifications for the neural networks’ outputs that lead to insights about their 

inner workings. In fact, the dense representations of these models are still poorly 

understood. We have a limited understanding of the information they capture, 

of where it is encoded and of why they perform so well on many NLP tasks. 

Contextual representations and attention weights have been interpreted mostly 

through probes, classifiers trained on said representations to predict a certain 

property. This framework is known as probing task and is a common 

methodology used to associate internal representations with external properties 

to answer questions about the structure of models. The idea is the following: a 

model is trained on some task, such as language modelling; the pre-trained 

representations generated using the model are given as input to another classifier 

that is trained to take the representations and predict some property. If the 

classifier performs well, it means that the model has learnt information that is 

relevant to the property (Belinkov, 2022). The probe should be a simple 

classifier so that the classification performance can be attributed to the quality 
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of the information encoded in the embeddings rather than to the ability of the 

classifier to find alternative patterns.  

The difficulty to assess what information these representations are capturing is 

particularly acute for compositional meaning information. Several studies have 

tried to explain how language models encode the semantic meaning of 

sentences. Some examples, just to mention a few, are the works from Ettinger 

et al. (2016), Adi et al. (2016), Conneau et al. (2018), Ettinger et al. (2018), 

Shwartz and Dagan (2019). 

Ettinger et al. (2016) and Ettinger et al. (2018) probe semantic evidence of 

compositionality through a classification task. Sentence-level meaning 

representations can be formed from word-level representations. In this case, to 

evaluate the sentence embedding it is central to evaluate how effectively the 

model has performed the composition process, defined as a generation of 

meaning that makes available all the information that we would expect to be 

able to extract from the input sentence. They propose methods to assess specific 

semantic information captured in sentence representations that involve the 

construction of a sentence dataset annotated for some linguistic characteristics 

and a test for extractability of sematic information by means of a simple 

classification task performed on the vector representations for the sentences on 

tasks defined by those target linguistic characteristics.  
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Adi et al. (2016) define prediction tasks for probing the encoding of sentence 

structure information in sentence representations, namely sentence length, word 

content and word order. They score the quality of the representations according 

to the ability of a classifier to solve such prediction tasks when the 

representations are given as input.  

Conneau et al. (2018) use encoders pre-trained on a certain task to produce 

sentence embeddings. A classifier is then trained on these representations. They 

define a set of probing tasks organized by the type of linguistic properties being 

probed: surface, syntactic and sematic information. The first requires no 

linguistic knowledge and involves the prediction of the length of sentences in 

terms of number of words and the word content. The second set of tasks tests 

whether sentence embeddings are sensitive to syntactic properties of the 

sentences they encode and the third requires some understanding of what a 

sentence denotes. 

Shwartz and Dagan (2019) deal with the meaning shift of constituent words in 

a phrase and the introduction of implicit information caused by lexical 

composition. They compare contextualized word embeddings with static word 

embeddings and address lexical composition through classification tasks.  

In this thesis a new dataset (Section 4.) and experiments (Section 5.) will be 

described for the probing of pre-trained language models on metonymy (Section 
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3.) classification. The aim is to detect whether the information for the meaning 

shift operated by metonymy is easily traceable in sentence embeddings created 

from SoTA pre-trained language models. Following the probing strategy 

adopted in the studies mentioned above, the experiments will be run on sentence 

embeddings which are given as input to a simple classifier. We expect the 

performance of the classifier to reveal if the information relating to the meaning 

shift is directly encoded in the representations.  
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3. Metonymy  

In the following sections, metonymy is introduced (Section 3.1.) as well as a 

short survey on the existing datasets on the phenomenon (Sections 3.2. and 3.3.) 

In the first part, different types of metonymies are described and illustrated with 

examples in order to have a clear understanding of how metonymy operates in 

natural language and how diverse its occurrences can be. In the second and the 

third, the different datasets for metonymy will be introduced and analysed to 

give some contextual background to the work discussed in the rest of the thesis 

with special regards to the creation of a new dataset (Section 4.).  

 

3.1. What is metonymy? 

The cognitive and linguistic process considered in this study is metonymy. It is 

a figure of speech in which meaning changes in context in specific ways: it 

occurs when the speaker uses the name of an entity to refer to another entity to 

which it is in some way closely related. It sounds perfectly natural to speakers 

to use, for example, the expression ‘to drink a bottle’, where ‘bottle’ refers to 

the liquid it contains and not the plastic or glass object containing the liquid. The 

entities involved can be related physically, casually, spatially, or according to 

other relations. In most cases the use of metonymy generates a semantic type 
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shift. Metonymy is sometimes seen as a kind of metaphor. Indeed, similarly to 

metaphor, which still allows to refer to one thing through another entity, but 

with a less obvious and more abstract relationship, metonymy is a productive 

mechanism that operates semantic and lexical change (Pustejovski and 

Batjukova, 2019).  

Not all relationships between lexical items can be exploited to produce 

metonymies. While an arm and a leg are both parts of a body, and are therefore 

closely related in space, one cannot metonymically stand for the other, i.e. ‘I 

broke my leg’ cannot be interpreted as ‘I broke my arm’. A relationship between 

entities is suited to form a metonymy when there is a conceptual distinctness 

between the two. In ‘She was treated by an ambulance’, the conceptual contrast 

between the vehicle and the paramedics is evident (Radden and Kövecses, 

1999). 

One common use of metonymy is where the part stands for the whole, as in 

‘Most of those have to go upstairs and I'll need to hire some muscle (= strong 

people) to do that’. Among the many parts a whole has, we pick the one that 

better describes the aspect we are focusing on. The sentence above could be 

modified as ‘These projects have to be finished and I’ll need to hire some good 

heads (= intelligent people) to do that’. In both cases a part (muscle, head) stands 
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for a whole (person), but one part or the other is chosen according to the specific 

characteristic it is associated with.  

The part-whole relationship between entities is not the only one that allows the 

production of metonymic expressions. Metonymic concepts are in some way 

systematic and their examples can be grouped according to the kind of 

relationship involved. According to Lakoff and Johnson (1980), metonymic 

relations can be described by the following taxonomy: 

- Part for whole: ‘I'll need to hire some muscle’. 

- Producer for product: ‘Smith was driving a Ford’. 

- Object used for user: ‘The piano will be late today’. 

- Controller for controlled: ‘Nixon bombed them anyway’.  

- Institution for people responsible: ‘The university will not agree’. 

- The place for the institution: ‘The Kremlin treats its own citizens with 

contempt’. 

- The place for the event: ‘We can ask about the health effects following 

Hiroshima’. 

Other taxonomies exist, like the more complex one defined by Radden and 

Kövecses (1999) (Figure 1), where at least 16 key types of metonymies are 

identified.  
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Figure 1: Key metonymy types in Radden and Kövecses’ (1999) taxonomy. Image taken from Littlemore (2015). 

 

Metonymic instances like the ones above are also examples of how we organize 

our thoughts. In fact, they allow us to conceptualize one thing according to its 

relation to something else. For example, in ‘The piano will be late today’ the 
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speaker is not interested in the person as a person but only in the fact that he or 

she is the musician that specifically plays the piano. Moreover, the use and 

understanding of the metonymic process goes beyond language and intersects 

both cognition and culture. The identification of a person based on its face rather 

than on the rest of the body is a tradition that is based on metonymic 

conceptualization and is evident in art and photography as well. We usually 

recognize people by their face, which is a part of the whole body and what we 

expect to see if we ask for a picture of someone. We can also use simple concepts 

to refer to something more complex or abstract, so that ‘Hiroshima’ can be used 

to refer to some events that took place in that site. In other words, speakers 

sometimes conceptualize and perceive things in metonymic terms (Lakoff 

and Johnson, 2008). 

Furthermore, in order to understand metonymic expressions, we use our own 

knowledge of the world. We know that ‘Hiroshima’ refers to the atomic 

bombing of Hiroshima of 1945 at the hands of the United States and that ‘a 

Picasso’ is certainly a painting because Pablo Picasso was a painter, so the 

producer of the piece of art. At the same way we know that an ambulance is a 

vehicle and cannot treat people, but there are paramedics on board who can, and 

that we cannot drink a bottle but the liquid inside it. In some ways, metonymy 

is a communicative shorthand (Littlemore, 2015) that allows people to 
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communicate using their shared knowledge of the world and less words than 

they would otherwise need.  

 

3.2. Existing datasets for metonymy resolution  

The existing datasets on metonymy focus mainly on location names, so 

geographical territories or political entities. One very common instance of 

metonymy, indeed, is the use of the location name to refer to people, events or 

products. In the sentence ‘Italy won the World Cup’, ‘Italy’ refers to the football 

team; at the same way, in ‘Nobody wants another Vietnam’, ‘Vietnam’ stands 

for the Vietnam war, and in ‘We would love some Bordeaux’ the region name 

stands for the wine produced there.  

 

3.2.1. Metonymy resolution 

According to Gritta et al. (2017), about 20% of location names in data sampled 

from Wikipedia are used metonymically. Resolving metonymy can improve 

many natural language processing tasks such as machine translation, question 

answering, named entity recognition, word sense disambiguation and 

coreference resolution. The task of metonymy resolution (MR) aims to identify 
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and appropriately interpret words that are used metonymically, that is to say to 

determine whether a potentially metonymic word (PMW) in a given context is 

used metonymically or not (Li et al. 2020). A number of different datasets were 

released by researchers for metonymy resolution, including SemEval (Nissim 

and Markert, 2007), ReLocaR (Gritta et al., 2017) and WiMCor (Kevin and 

Michael, 2020), which were mainly used for conventional approaches making 

extensive use of taggers, parsers, lexicons and hand-crafted or corpus-derived 

features (Nissim and Markert, 2003; Farkas et al., 2007; Nastase et al., 2012) 

and which will be described in the following sections. 

 

3.2.2. An annotated dataset for locations 

Nissim and Markert (2003) introduced an annotated corpus of occurrences of 

country names. The annotation scheme identifies literal, metonymic and mixed 

readings. Literal comprises a locative and a political entity interpretation (‘coral 

coast of Papua New Guinea’)1. Metonymic further specifies some patterns: 

place-for-people: a place stands for any people or organizations associated with 

it (‘England lost in the semi-final.’) ; place-for-event: a place stands for an event 

that occurred there (‘Sex, drugs, and Vietnam have haunted Bill Clinton’s 

                                                           
1 Examples were taken from Nissim and Markert (2003). 
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campaign.’); place-for-product: a place stands for the product manufactured 

there (‘a smooth Bordeaux that was gutsy enough to cope with our food’); other 

met: unconventional metonymies that do not fit in any of the other patterns (‘The 

thing about the record is the influences of the music. The bottom end is very New 

York/ New Jersey and the top is very melodic.’). Finally, mixed is used when 

both interpretations are triggered by two different predicates and coexist in the 

same sentence (‘they arrived in Nigeria, hitherto a leading critic of [...]’).  

1000 occurrences of country names, each surrounded by three sentences of 

context, were extracted from the British National Corpus (BNC) (BNC 

Consortium, 2007) and were annotated independently by the two authors. Only 

the examples both annotators would agree on were included in the corpus, and 

noisy elements were removed. The result is a corpus of 925 examples, of which 

737 are literal and 188 are non-literal. In this study metonymy resolution is 

treated as a word sense disambiguation (WSD) task, as it can be reformulated as 

a classification task between the literal interpretation of the word and the set of 

possible metonymic patterns and is therefore concerned with distinguishing 

between possible word senses or readings.  
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3.2.3. SemEval 2007  

The SemEval 2007 Shared Task 8 (Markert and Nissim, 2007) dataset still keeps 

the subtask concentrating on the semantic class location and adds another one 

concentrating on organization, exemplified by company names. The possible 

annotation categories defined by Nassim and Markert (2003) were maintained 

as well as the four metonymic patterns for location, while six metonymic 

patterns were included for the class organization: org-for-members, where the 

organization stands for its members, such as a spokesperson or its employees 

(‘Last February IBM announced [. . .]’2); org-for-event, where it is used to refer 

to an event associated with the organization (‘The resignation of Leon Brittan 

from Trade and Industry in the aftermath of Westland.’); org-for-product, where 

the name of a company refers to its products (‘His BMW went on to race at Le 

Mans’); org-for-facility, where it stands for the facility housing the organization 

or one of its branches (‘The opening of a McDonald’s is a major event’); org-

for-index, where the organization name is used for an index that indicates its 

value (‘BMW slipped 4p to 31p’); othermet, where the metonymy does not fall 

into any of the prespecified patterns (‘funds [. . . ] had been paid into Barclays 

Bank.’).  

                                                           
2 Examples were taken from Markert and Nissim (2007). 
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The dataset also includes annotated examples for two class-independent 

categories: object-for-name, where a name can be used as a mere signifier, not 

referring to any object or set of objects (‘Chevrolet is feminine because of its 

sound - it’s a longer word than Ford, has an open vowel at the end, connotes 

Frenchness.’); object-for-representation, where a name can refer to a 

representation (such as a photo or painting) of the referent of its literal reading 

(‘Look at the picture: this is Malta.’).  

The occurrences of all names were extracted from the BNC. The total number 

of examples for location were divided into a training set of 925 and a test set of 

908 annotated cases. The examples for organization, instead, were divided into 

a training set containing 1090 and a test set containing 842 annotated cases. The 

distribution of the literal, metonymic and mixed classes are 80%, 18% and 2%. 

The task was to automatically classify country and company names as having a 

literal or non-literal meaning given a four-sentence context. Participants in the 

SemEval 2007 Shared Task 8 could additionally attempt finer-grained 

classifications according to the prespecified set of metonymic patterns.  
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3.2.4. ReLocaR 

One of the issues of the SemEval dataset is that it is too biased towards the literal 

class. In addition, the annotation strategies were challenged by Poibeau (2007), 

by Zhang and Gelernter (2015) and by Gritta et al. (2017). To address these 

issues, Gritta et al. (2017) introduced a new metonymy resolution (MR) dataset 

called ReLocaR (Real Location Retrieval), designed to evaluate the ability of 

models to correctly classify literal, metonymic and mixed location mentions.  

It contains 1026 training and 1000 test examples collected using Wikipedia’s 

Random Article API13. Approximately 80% of sampled examples were literal, 

so the excess literal instances were discarded to balance the classes.  

ReLocaR too has three classes: literal, metonymic and mixed. The first describes 

territorial interpretations, that is inanimate places that correspond to a set of 

coordinates (‘The treaty was signed in Italy.’4). The second covers the 

occurrences of locations that express animacy (‘Jamaica’s indifference will not 

improve the negotiations.’), stand for any persons or organisations associated 

with it (‘We will give aid to Afghanistan.’), a product (‘I really enjoyed that 

delicious Bordeaux.’), a sports team (‘India beat Pakistan in the playoffs.’), a 

governmental or other legal entity (‘Zambia passed a new justice law today.’), 

                                                           
3 https://www.mediawiki.org/wiki/API:Random  
4 Examples were taken from Gritta et al. (2017). 

https://www.mediawiki.org/wiki/API:Random
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or an event (‘Vietnam was a bad experience for me.’). Finally, the mixed class 

is assigned either in the cases in which both readings are evoked at the same 

time (‘The Central European country of Slovakia recently joined the EU’), or in 

the cases in which there is not enough context to discriminate an interpretation 

from another possible one (‘We marvelled at the art of ancient Mexico.’).  

 

3.2.5. WiMCor 

Containing about 2000 samples or under, SemEval and ReLocaR are fairly small 

datasets and are inadequate for large-scale machine learning and statistical 

analysis. In order to make up for the insufficient coverage of the different ways 

in which metonymy can be observed in real-world data and for the low 

granularity of the annotation scheme, Mathews and Strube (2020) created a new 

corpus called WiMCor (Wikipedia Metonymy Corpus).  

Samples pertaining to location names were collected using the English 

Wikipedia and DBpedia5. Wikipedia disambiguation pages were used to identify 

instances of metonymy, and DBpedia was used to check the category of the 

entity. The dataset was constructed in a semi-automatic way: metonymic pairs 

were generated as pairs of Wikipedia articles that are referred to by the same 

                                                           
5Dataset available here: https://www.dbpedia.org/  

https://www.dbpedia.org/
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title but refer to different concepts. A key condition for this selection is that the 

two entities have a strong relationship. For example, the capital Paris and Paris 

Hilton are referred to by the same word ‘Paris’ but there is no strong link 

between them, so the instances do not form a metonymic couple. On the 

contrary, Delft and Delft University of Technology constitute a metonymic pair 

because the university is located in the city it gets its name from and both 

concepts can be referred to by the same anchor text. Samples are then generated 

automatically from Wikipedia articles. The entity occurring in that paragraph 

(restricted to be between 10 and 512 words long and generally composed of 

more than one sentence) is substituted with the anchor text, which corresponds 

to the PMW. For example, ‘The Delft University of Technology applied for a 

patent […]’ is transformed into ‘Delft applied for a patent […]’6. 

The annotation scheme is built on various levels of granularity. The coarse-

grained labels are literal and metonymic, identifying whether the location name 

refers to a geographical entity or has other possible interpretations. The medium-

grained labels identify the type of the entity the PMW refers to, which can be 

location, institution, artifact, team and event. The fine-grained level of 

annotation specifies the precise entity the PMW refers to so, in the 

                                                           
6 Examples were taken from Mathews and Strube (2020). 
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abovementioned case of Delft, we would have Delft, Netherlands or Delft 

University of Technology.  

Only the pairs for which at least 50 samples were generated were retained. The 

final dataset contains 206.000 samples for 5404 metonymic pairs. The corpus is 

partitioned into train, validation and test set in the ratio 60:20:20 respectively. 

 

3.3. A more representative dataset 

All the datasets introduced so far are concerned with location names and how 

they can be used metonymically to refer to people, organizations, events or 

products. This is, however, just one of the many classes that can dynamically 

acquire new meaning in metonymy (see the rich taxonomy by Radden and 

Kövecses (1999) in Section 3.1.). 

A new dataset of 509 items was created that is representative of the most 

common types of metonymies (Pedinotti and Lenci, 2020). The relationships 

included are container for content, producer for product, product for producer, 

location for located, causer for result and possessed for possessor. Each item 

consists of two sentences, one in which a PMW is used metonymically and one 

in which it is used literally, both accompanied by a paraphrase making the 

meaning of the target word explicit. For example, if the target word is ‘bottle’, 
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there will be a sentence in which the target word is used metonymically (e.g., 

‘The guest tasted the bottle’), the metonymic paraphrase (e.g., ‘wine’), a 

sentence in which the target is used literally (e.g., ‘The man raised the bottle’) 

and the literal paraphrase (e.g., ‘container’)7. 

The dataset was used to test whether deep neural architectures for language 

modelling and in particular BERT (Devlin et al., 2019) contextualized 

embeddings can be used to model the meaning shifts associated with metonymic 

uses of words.  

 

 

 

 

 

 

                                                           
7 Example taken from Pedinotti and Lenci (2020). 
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4. The creation of a new dataset 

In this section, the new dataset is presented. This includes the description of the 

different steps of construction of our collection of data: the types of metonymy 

included (Section 4.1.), the collection and annotation of metonymic sentences 

(Section 4.2.), the validation of metonymic sentences (Section 4.3.) and the 

collection and annotation of negative examples (Section 4.4.). Finally, some 

statistics from the complete dataset are shown (Section 4.5.). The purpose of this 

work is to create a dataset for testing pre-trained language models 

representations. The goal is to find whether such representations are able to 

detect and encode meaning shifts in sentences. To do so, we present a dataset 

containing a higher number of metonymic relationships than the ones introduced 

so far for a more complete probing of the models with respect to metonymy 

classification.  

 

4.1. Types of metonymy included in the dataset 

Section 3.2. contains a brief survey of the existing datasets for metonymy. We 

have seen how the datasets used so far consists mainly of metonymies of the 
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location type such as ‘England lost in the semi-final’8. The aim of the new 

dataset is to collect examples for different kinds of metonymic relationships to 

create a dataset that is more representative of the use of metonymy in natural 

language.  

Sentences were collected for the following metonymic relationships: 

1. Contingency 

2. Event-agent 

3. External Component 

4. Internal Component 

5. Origin 

6. Participant 

7. Patient 

8. Attributive 

9. Productive 

10. Spatial 

11. Temporal 

Some examples of metonymic pairs and sentences for each relationship are 

shown in Table 1.  

                                                           
8 Example from Nissim and Markert (2003). 
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Relationship Example 

metonymic pair 

Sentence 

Contingency bus - fare Passengers should pay the bus 

when boarding. 

 

Event-agent doctor- 

appointment 

Do not skip the doctor. 

 

 

External 

Component 

sail - boat Their 36-foot sail hit rough 

waters, losing power and the 

ability to steer. 

Internal  

Component 

pen - ink He also walked around in public 

with pen smudged on his face. 

 

Origin author - book He also supported the 

publication of other authors. 

 

Participant ambulance - people The ambulance used a 

defibrillator on the patient and 

assisted his breathing. 
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Patient airplane - pilot Eight seconds later, the airplane 

acknowledged that and said he 

had two helicopters in sight. 

Attributive beauty - woman This Sally Keeble, an absolute 

young beauty, could not be 

fooled. 

Productive cigarette – smoke Nicotine affects the brain within 

seconds of inhaling a cigarette. 

 

Spatial beer - bottle Canon is accused of trying to cut 

a relative with a broken beer 

during an argument at her home. 

Temporal Hiroshima - bomb This was not ended till August 8, 

two days after Hiroshima, when 

the Soviets declared war. 

Table 1. Examples of word pairs and sentences for each metonymic relationship in the dataset. 

 

A complete description of the metonymic word pairs included in the dataset is 

given in Section 4.5, together with an illustration of the distribution of data in 

the resulting dataset. Metonymic and negative examples (sentences in which the 
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target word is used with a literal interpretation) for each pair can be seen in 

Appendix A.  

 

4.2. Data collection and annotation 

In the first phase, for each of the relationships listed above, a number of 

sentences was extracted automatically from ukWac (Baroni et al., 2019), BNC 

(BNC Consortium, 2007) and the Wikipedia Corpus9. We had a relevant number 

of metonymic word pairs for each relationship, each having dozens of examples. 

These were annotated by two annotators: me and Paolo Pedinotti, a PhD student. 

Only the sentences we both agreed on were included in the first collection of 

data. The data included the kind of relationship, the cue word (CW), the target 

word (TW), the original sentence in which the TW is used with its literal 

interpretation, the metonymic sentence in which the TW is used metonymically, 

and the index of the TW and CW in the original sentence and of the TW in the 

metonymic sentence. Here is an example (Table 2): 

 

 

                                                           
9 Designed by Mark Davis in 2015, it is accessible at https://www.english-corpora.org/wiki/  

https://www.english-corpora.org/wiki/
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relation Spatial 

cue word beer 

target word  bottle 

original sentence  A grocery store sells unique and hard to find beers in 

bottles, which you can either drink on premise or take 

home. 

metonymic 

sentence 

A grocery store sells unique and hard to find bottles, 

which you can either drink on premise or take home. 

id cue word 10 

id target word 12 

id metonymy 10 

Table 2: The information included in the first collection of data. 

 

The metonymic sentences were generated automatically starting from the 

original sentences, so they sometimes needed editing or cleaning to be 

grammatically or idiomatically complete. This was done in a different column 

and the indexes were corrected accordingly. The resulting collection was not 

large enough. In fact, we had reached about 200 sentences, but the aim was to 

collect 1000 metonymic sentences to present to and validate with native 

speakers (Section 4.3.). I manually collected the remaining sentences on Sketch 
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Engine10, an online tool that allows to interrogate corpora, and added the missing 

information. To do so I used specific queries: 

 [ws("beer-n", "\"%w\" [^ /]+ \.\.\.", "bottle-n")] to find sentences 

containing prepositional phrases such as beer in bottle, beer in the bottle, 

beer of the bottle, etc. 

 [ws("bottle-n", "modifiers of \"%w\"", "beer-n")] to find sentences where 

the TW modifies the CW such as bottle beer. 

 [ws("beer-n", "possessors of \"%w\"", "bottle-n")] to find sentences 

containing the genitive form such as bottle's beer. 

The sentences retrieved were manually edited to obtain the metonymic form. 

For example, ‘I recall drinking mouthfuls of increasingly warm beer from 

random bottles which others had left behind’ was edited as ‘I recall drinking 

mouthfuls of increasingly warm random bottles which others had left behind’. 

These were again approved by the second annotator. All sentences included in 

the collection have a maximum length of 30 tokens (both words and punctuation 

are counted). Once 1000 sentences were collected, we moved on to the next step 

concerning their validation with native speakers.  

                                                           
10 https://www.sketchengine.eu/  

https://www.sketchengine.eu/
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4.3. Data validation 

The collected data was validated through Prolific11, a platform that allows to 

launch studies to thousands of participants that can be filtered and selected 

according to some criteria. The study was presented as a study on the 

acceptability of sentences and the task was defined as follows: 

‘How acceptable is each sentence?  

Please rate the acceptability of the following sentences on a seven-point scale. 

A score equal to 1 must be selected if the sentence makes no sense and its use is 

not plausible (e.g. 'Perhaps I just need to get used to driving a cigarette'); a 

score equal to 7 means that the sentence is perfectly plausible (e.g. 'Airplane 

pilots have long used checklists before take off to ensure safety')’. 

 8 questionnaires were submitted to 5 participants each. These were filtered 

according to their native language and their reliability in past studies. Only 

native English speakers who had participated in and whose results had been 

accepted in past studies were selected. 

Each questionnaire included 50 sentences, 10 of which were control examples: 

5 were meaningless sentences for which we expected a score equal or close to 

                                                           
11 https://www.prolific.co/  

https://www.prolific.co/
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1, and the other 5 were perfectly acceptable sentences for which we expected a 

score equal or close to 7. The meaningless sentences were created by taking 

some sentences in the collection and substituting one word with another one. 

These are: 

1. Margaret More composed milk, which she played on stage. 

2. Four Latino men sat at the bar drinking guitar. 

3. It is approximately eight times warmer than a pen and does not felt or 

shrink. 

4. She hated ballet; the mug made her feet bleed. 

5. This morning, she poured herself a cottage and examined the raw goat 

milk. 

The meaningful sentences were either examples of highly conventionalized 

metonymies or sentences containing no metonymy at all: 

1. Nixon bombed them anyway. 

2. According to the State Patrol, Smith was driving a Ford. 

3. His words will be accompanied by the traditional music of the Celtic 

harp. 

4. We can go back now and ask about the health effects following the 

Hiroshima bombs. 
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5. Most of those have to go upstairs and I'll need to hire some muscle to do 

that. 

In order to judge participants as reliable and therefore accept their results, the 

average score assigned to the meaningless sentences had to be smaller than 3, 

while the average score assigned to the meaningful sentences had to be higher 

than 5. The remaining 40 sentences were heterogeneous examples from the 

collection introduced in Section 4.2.  

To obtain a robust annotation, mean and variance were measured on the total 

judgements for each sentence. If the mean was equal to or greater than 4.5 

(meaning that participants find the sentence acceptable) or equal to or smaller 

than 2 (meaning that participants find the sentence not acceptable), and the 

variance was equal to or smaller than 3.5, the annotation was considered robust. 

Otherwise, the sentences were collected and tested a second time in the ninth 

final questionnaire.  

For the metonymic pairs for which the examples shown to participants were 

always robustly rated as acceptable, all sentences in the collection were included 

in the final dataset. For CW-TW pairs that were sometimes rated as acceptable, 

only the examples shown to participants that obtained a high score were 

selected. Finally, for the CW-TW pairs always rated as not acceptable, no 

example was taken. This is the case for only one pair, beard for man (‘Next to 
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her is a large gray beard who is drinking a frothy beer’). The distribution of 

data is shown in Section 4.5. 

 

4.4. Collection and annotation of negative examples 

The collection of negative examples, that is to say sentences not presenting 

metonymy at all, was straightforward. The sentences in which the TW is used 

in its literal interpretation were selected from a collection of automatically 

retrieved sentences. These were again annotated by me and Dott. Paolo Pedinotti 

and only the ones we both agreed on were selected. The ratio is 3:1, meaning 

that for each metonymic sentence, 3 sentences in which the word is used literally 

were collected.  

 

4.5. Dataset statistics 

In this section the distribution of data in the final dataset is shown according to 

relation and metonymic pairs. The richness in terms of variety of relationships 

between the cue and the target words is the main novelty of this dataset with 

respect to existing datasets described in Section 3.2. 504 sentences are 
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metonymic, 1512 are literal. The total number of CW-TW pairs is 42. The details 

are illustrated in the table below (Table 3). 

 

Relation CW-TW pair N. of metonymic 

examples 

N. of literal 

examples 

Contingency fare 

bus 

27 81 

Event-agent appointment 

doctor 

6 18 

 birth 

baby 

22 66 

External 

Component 

boat 

sail 

6 18 

 car 

door 

3 9 

 car 

wheel 

4 12 

 door 

barn 

1 3 
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 guitar 

string 

20 60 

 wool 

sheep 

4 12 

Internal 

Component 

ink 

pen 

6 18 

 milk 

coconut 

5 15 

Origin  book 

author 

6 18 

 author 

book 

39 117 

Participant  people 

ambulance 

50 150 

 people 

boat 

8 24 

 people 

building 

5 15 

Patient  battery 

car 

4 12 
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 car 

battery 

2 6 

 people 

motorcycle 

6 18 

 pilot 

airplane 

24 72 

 pilot 

helicopter 

5 15 

 shoe 

toe 

6 18 

Attributive diaper 

baby 

13 39 

 officer 

uniform 

4 12 

 woman 

beauty 

27 81 

Productive chord 

guitar 

2 6 

 music 

guitar 

2 6 
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 music 

harp 

5 15 

 music 

piano 

5 15 

 music  

violin 

23 69 

 smoke 

cigar 

23 69 

 smoke  

cigarette 

19 57 

 sound 

keyboard 

21 63 

Spatial beer 

bottle 

3 9 

 bottle 

beer 

33 99 

 carton 

milk 

4 12 

 coffee 

mug 

4 12 
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 game  

ball 

7 21 

 milk 

carton 

19 57 

 mug  

coffee 

6 18 

Temporal bomb 

Hiroshima 

23 69 

 vacation 

cottage 

2 6 

Table 3: Distribution of data in the final dataset. 
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5. Experiments 

In this section the experiments carried out on the new dataset are discussed. The 

aim of this work is to probe pre-trained language models for metonymy 

classification. The idea is that we can test the sentence embeddings created by 

these large models by using a simple classifier to detect whether the information 

we are interested in is encoded in such representations and is easily accessible 

(see Section 2.2. for more details on probing tasks). The pre-trained model used 

for generating sentence embeddings for our dataset is BERT (Devlin et al., 

2019). This is done with and without fine-tuning the model on the dataset. The 

representations obtained are then passed to the classifier, the performance of 

which is an indicator of the availability and accessibility of information 

concerning meaning shift in the given embeddings. The task carried out by the 

probe is indeed a binary classification: a sentence can either contain a metonymy 

or not.  

First, I introduce the model used in Section 5.1., with regard to the pre-trained 

language model (Section 5.1.1.) and the probe (Section 5.1.2.). Then, I describe 

the different test sets on which the experiments were run (Section 5.2.), the 

classification task (Section 5.3.) and the corresponding performances (Section 

5.4.). Finally, I analyse the results in more detail in Section 5.5. 
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5.1 Models  

The models introduced in this section are the pre-trained language model 

(Section 5.1.1.) used to create the embeddings for the sentences in the new 

dataset, and the probe (Section 5.1.2) trained to perform a binary classification 

task on such embeddings. The model assessed is BERT (Devlin et al., 2019), a 

deep architecture pre-trained on large amounts of linguistic data that currently 

represents the SoTA in NLP on many language tasks. The probe is a much 

simpler model selected specially for this task.  

 

5.1.1. BERT 

BERT (Bidirectional Encoder Representations from Transformers; Devlin et al., 

2019) is a language representation model designed to train bidirectional deep 

representations. Unlike unidirectional language models like OpenAI GPT 

(Radford et al., 2018), where every token can only attend to previous tokens in 

the self-attention layer of the Transformer (Vaswani et al., 2017), BERT’s 

representations are trained by jointly conditioning on both left and right contexts 

in all layers. 

The architecture of BERT is a multi-layer bidirectional Transformer encoder. 

The number of layers (i.e., Transformer blocks), the hidden size and the number 
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of self-attention (for more details on Attention see Vaswani et al., 2017, and 

Alammar, 2018c) heads define two model sizes: BERT-base and BERT-large. 

BERT-base has 12 layers, a hidden size of 768, 12 self-attention heads and 

110M parameters in total. BERT-large, instead, has 24 layers, hidden size 1024, 

16 self-attention heads and 340M total parameters. 

 

Figure 2: BERT base and BERT large (Image from Alammar, 2018b). 

 

The input representation is able to encode a sentence or a pair of sentences in 

one token sequence. This allows BERT to handle a variety of downstream tasks.  
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Figure 3: BERT input representation (Image from Devlin et al., 2019). 

 

A special classification token ([CLS]) is always the first token of every 

sequence. The aggregate sequence representation for classification tasks is the 

final hidden state corresponding to this token. Sentence pairs are concatenated 

in a single sequence and separated by the special token [SEP]. 

BERT’s input is a sequence of words. Each layer applies self-attention to the 

sequence, passes the result through a feed-forward network and then to the next 

encoder.  

 



54 
 

 

Figure 4: Two sub-layers of an encoder. Encoders are identical in structure but do not share the same weights 

(Image from Alammar, 2018a) 

 

For each position the output is a vector of size 768 in BERT-base. For sequence 

classification, only the output of the first position (to which the special token 

[CLS] was assigned) is considered.  

 

Figure 5: Model output (Image from Alammar, 2018b). 



55 
 

The output vector of the first position can be used as the input for a classifier.  

 

Figure 6: Example of classification task with BERT’s output (Image from Alammar, 2018b).  

 

There are two steps to the impementation of BERT: pre-training and fine-tuning. 

During the first step the model is trained on unlabelled data on different pre-

training tasks. To fine-tune the model, it needs to be initialized with the pre-

trained parameters which are then fine-tuned using labelled data from the 

downstream task.  

To enable pre-trained deep bidirectional representations, BERT uses a masked 

language model (MLM) and a binarized next sentence prediction (NSP) task. In 

the MLM, some percentage of the input tokens are masked randomly and 
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predicted. This procedure is also referred to as a cloze task in literature. In the 

NSP task, two sentences A and B are given: in 50% of cases B is the sentences 

that actually follows A, in the other 50% of cases B is a random sentence. This 

allows to capture the relationship between two sentences, an information needed 

for many downstream tasks such as Question Answering (QA) and Natural 

Language Inference (NLI). BERT is pre-trained on the BooksCorpus (800M 

words) (Zhu et al., 2015) and English Wikipedia (2,500M words). 

 

 

Figure 7: Pre-training and fine-tuning processes for BERT. The architecture remains the same, but all 

parameters are fine-tuned during fine-tuning (Image from Devlin et al., 2019). 

 

Fine-tuning is relatively inexpensive compared to pre-training. It requires an 

additional output layer and training on a dataset annotated for a specific task, 

which results in a modification of the network weights via back-propagation of 
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the error. Therefore, the pre-trained model can be fine-tuned for a wide range of 

tasks without substantial task-specific architecture modifications.  

For the classification task presented in Section 5.3. I used the sentence 

representations created by BERT-base-uncased12 with and without fine-tuning 

on the new dataset. The model lowercases words starting with a capital letter. 

For the fine-tuning of the model, I used BertForSequenceClassification13 pre-

trained model.  

This is the summary of the architecture of one of its 12 hidden layers: 

BertForSequenceClassification( 

  (bert): BertModel( 

    (embeddings): BertEmbeddings( 

      (word_embeddings): Embedding(30522, 768, padding_idx=0) 

      (position_embeddings): Embedding(512, 768) 

      (token_type_embeddings): Embedding(2, 768) 

      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) 

      (dropout): Dropout(p=0.1, inplace=False) 

    ) 

    (encoder): BertEncoder( 

      (layer): ModuleList( 

        (0): BertLayer( 

          (attention): BertAttention( 

            (self): BertSelfAttention( 

              (query): Linear(in_features=768, out_features=768, bias=True) 

                                                           
12 https://huggingface.co/tftransformers/bert-base-uncased  
13https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClas
sification  

https://huggingface.co/tftransformers/bert-base-uncased
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification
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              (key): Linear(in_features=768, out_features=768, bias=True) 

              (value): Linear(in_features=768, out_features=768, bias=True) 

              (dropout): Dropout(p=0.1, inplace=False) 

            ) 

            (output): BertSelfOutput( 

              (dense): Linear(in_features=768, out_features=768, bias=True) 

              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) 

              (dropout): Dropout(p=0.1, inplace=False) 

            ) 

          ) 

          (intermediate): BertIntermediate( 

            (dense): Linear(in_features=768, out_features=3072, bias=True) 

            (intermediate_act_fn): GELUActivation() 

          ) 

          (output): BertOutput( 

            (dense): Linear(in_features=3072, out_features=768, bias=True) 

            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) 

            (dropout): Dropout(p=0.1, inplace=False) 

          ) 

        ) 

 

This model offers an additional argument to add an optional classification head 

with the required number of labels.  

model = BertForSequenceClassification.from_pretrained("bert-base-uncased", 

num_labels=2) 

 

This adds a sequence classification head with two output units as the final layer 

(a linear layer on top of the pooled output): 
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) 

    ) 

    (pooler): BertPooler( 

      (dense): Linear(in_features=768, out_features=768, bias=True) 

      (activation): Tanh() 

    ) 

  ) 

  (dropout): Dropout(p=0.1, inplace=False) 

  (classifier): Linear(in_features=768, out_features=2, bias=True) 

) 

 

The parameters used for the fine-tuning process are: 

Learning rate (Adam): 2e-5; 

Batch size: 32; 

Epochs: 3; 

Max_sequence_length: 30; 

Dropout: 0.1. 

 

While most parameters follow the ones proposed for fine-tuning by Devlin et al. 

(2018), the maximum sequence length, which controls the length of padding and 

truncation, was set to 30 after the distribution of the sentence length in the 

dataset, which is between 5 and 30.  
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5.1.2. Probing classifier 

In order to identify the best probing classifier for the task, 3 potential probes of 

increasing complexity were tested, compared to a baseline classifier and 

evaluated with a control task. 

The first model is a linear perceptron classifier imported from scikit-learn14:  

 

perceptron = Perceptron(validation_fraction=0.2, random_state=42, 

penalty='elasticnet') 

 

The second is a multi-layer perceptron classifier with one hidden layer of 10 

nodes imported from the same library15 and implemented with the configuration 

of parameters that allowed the best performance: 

 

MLPclass = MLPClassifier(hidden_layer_sizes=(10,), max_iter=150, 

activation='relu', solver='lbfgs', verbose=1, random_state=42, 

learning_rate='invscaling', validation_fraction=0.2) 

 

                                                           
14 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html  
15 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html  

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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The last probe was built in Keras16. It is a sequential model with 3 layers defined 

as follows: 

model = Sequential() 

model.add(Dense(20, activation='relu')) 

model.add(Dropout(0.4)) 

model.add(Dense(15, activation='relu')) 

model.add(Dropout(0.4)) 

model.add(Dense(1, activation='sigmoid')) 

model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy', f1_m, precision_m, recall_m]) 

 

First, I compared the performances of the three models against the performance 

of a baseline. The idea is to observe whether the probes perform significantly 

better than the baseline. I used a classifier that makes predictions ignoring the 

input features. A DummyClassifier was imported from scikit-learn17 which 

generates predictions uniformly at random from the list of unique labels, 

meaning that each class has equal probability.  

                                                           
16 https://keras.io/  
17 https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html  

https://keras.io/
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
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The probing classifiers were tested on the classification task described in Section 

5.3. Specifically, the sentence embeddings generated by BERT-base-uncased 

without fine-tuning were given as input. The test set, made up from 30% of 

examples in the dataset, was defined through random split. The classifier’s task 

was to assign the correct label to each sequence: ‘Literal’ or ‘Metonymic’. The 

F1-score for each model is shown in Table 4.  

Classifier Performance (F1 score) 

Perceptron 0.47 

MLPClassifier 0.58 

KerasSequential 0.52 

DummyUniform 0.34 

Table 4: F1 scores of probing classifiers on binary classification task. 

 

As all classifiers outperform the baseline, therefore their linguistic task accuracy 

is acceptable, they are evaluated on a control task to find whether they also 

exhibit high selectivity (Hewitt and Liang, 2019). Hewitt and Liang (2019) 

define control tasks which associate the inputs to random outputs. The idea is 

that this information can only be learnt by the probe itself, so if the probe 

performs well on the control task it means that is has low selectivity. This is due 

to the fact that the more a probe’s ability to make output decisions is independent 
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from the linguistic properties of a representation, the less its accuracy on a 

linguistic task is descriptive of the properties of a representation. The goal is to 

identify a probe that has high accuracy on the linguistic task and low control 

accuracy, meaning that it is actually learning from the representations given in 

input rather than memorizing and performing similarly on any data.  

The control task for this work was defined by randomly assigning the two 

possible labels to the sentences while conserving the original ratio. Selectivity 

was measured as the difference between the F1 score of each classifier on the 

control task and the actual classification task. The results are shown in Table 5.  

Classifier Class. Task Control Task Selectivity 

Perceptron 0.47 0.14 0.33 

MLPClassifier 0.58 0.22 0.36 

KerasSequential 0.52 0.18 0.34 

DummyUniform 0.34 0.34 0.00 

Table 5: Selectivity of probes as the difference between the F1 scores on control task and real classification 

task. 

 

While the Dummy Classifier performs equally on both tasks, therefore obtains 

a selectivity of 0, Perceptron, MLP Classifier and Keras Sequential present a 

similar selectivity, respectively of 0.33, 0.36 and 0.34. The output decisions that 
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display the higher dependence on the linguistic properties of the representations 

are the ones made by MLP Classifier, with an F1 score equal to 0.22 on the 

control task and to 0.58 on the linguistic classification task. As a consequence, 

the probing classifier used from this point on for the experiments presented in 

the thesis is MLP Classifier.  

 

5.2. Train/test split 

Experiments were carried out in different settings according to the intended test 

set. The train-test split was controlled to verify the generalization level for the 

linguistic information. There are two different train and test sets for each 

experiment.  

The first is a random split in which the test set is made up of 30% of the examples 

in the dataset. The size of the training and test sets are respectively 1411 and 

605. The distribution of sentences according to their label is shown in Table 6. 

Training set   Test set  

Literal  Metonymic Literal Metonymic 

1050  361 462 143 

Table 6: Distribution of examples in training and test set for random split . 
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The number of examples for every metonymic relationship included in the test 

set is (Table 7): 

Metonymic relationship N. of examples in test set 

Contingency 4 

Event-agent 10 

External Component 14 

Internal Component 3 

Origin 16 

Participant 24 

Patient 10 

Attributive 15 

Productive 24 

Spatial 19 

Temporal 4 

Table 7: Number of metonymic examples for each relationship in the test set obtained through random split.  

 

The second train/test split was designed to include in the test set only examples 

of TW-CW pairs that are not present in the training set, as in Ettinger at al. 

(2018). This is done to verify whether the model is able to generalize the 
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linguistic information learnt from representations and to apply this knowledge 

to examples never seen in the training phase.  

To do so, I alphabetically ordered the word pairs and split the dataset in a way 

that would maintain a similar training and test set proportion with respect to the 

random split described above. All sentences for the last 15 pairs make up the 

test set. The size of the training and test sets are respectively 1452 and 564. The 

distribution of sentences according to their label is shown in Table 8. 

Training set   Test set  

Literal  Metonymic Literal Metonymic 

1089  363 423 141 

Table 8: Distribution of examples in training and test set for controlled split. 

 

The metonymic relationships the word pairs represent are (Table 9): 

Metonymic relationship N. examples in test set 

External Component 34 

Internal Component 6 

Patient 17 

Attributive 4 

Productive 49 
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Spatial 8 

Temporal 23 

Table 9: Number of metonymic examples for each relationship in the test set obtained through controlled 

split.  

 

5.3. Classification task 

The aim of the experiments here presented is to interpret language models’ 

representations and verify the linguistic properties they encode. A classification 

task is designed for probing specific information captured in vector 

representations of sentence meaning. This approach builds on diagnostic 

methods proposed by Gupta et al. (2015) and Ettinger et al. (2016), which 

involve a classification task for targeting some information captured in vector 

representations. The idea is that if we have a collection of composed vectors that 

represent sentences and we require a classifier to identify a particular type of 

semantic information, by measuring the quality of the performance of the 

classifier on this task we can assess whether the information in question is 

present in the composed representations and is accessible (Ettinger et al., 2016).  

We have constructed and annotated a dataset for metonymy (Section 4.) in 

which some target words are either used in their metonymic or literal 

interpretation. Once the pre-trained language model (Section 5.1.1.) and the 
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probing classifier (Section 5.1.2.) have been selected, the classification task can 

be carried out. The vector representations generated by the language model are 

given as input to the probe, whose task is to label each sequence as ‘Literal’ or 

‘Metonymic’. This is done in different combined conditions: we consider a) the 

representations created by BERT (Devlin et al., 2019) with and without fine-

tuning on the new dataset and b) the different training/test splits described in 

Section 5.2. The goal is to ascertain whether pre-trained language models are 

able to encode information relating to the semantic shift produced by metonymy.  

 

5.4. Performances 

This section reports the performances of the probe on the classification task 

taking into consideration the sentence embeddings created by BERT (Devlin et 

al., 2019) with and without fine-tuning and the different test sets.  

The results of the classifier for the data setting in which the training and the test 

sets are split randomly are shown in Table 10: 
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BERT with no fine-tuning BERT with fine-tuning 

F1 score: 0.58 

Precision: 0.56 

Recall: 0.60 

Confusion matrix: 

397       65 

  57       86 

F1 score: 0.52 

Precision: 0.54 

Recall: 0.50 

Confusion matrix: 

401       61 

 71        72 

Table 10: Performances of the probe with the random train/test split. 

The results for the second data setting in which the train/test split was controlled 

in order to only include in the test set examples never seen during the training 

phase are (Table 11): 

BERT with no fine-tuning BERT with fine-tuning 

F1 score: 0.48 

Precision: 0.57 

Recall: 0.41 

Confusion matrix: 

380       43 

  82       59 

F1 score: 0.45 

Precision: 0.56 

Recall: 0.38 

Confusion matrix: 

382       41 

 87        54 

Table 11: Performances of the probe with the controlled train/test split 
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F1 scores are always higher when the tested sentence embeddings are obtained 

from the model with no fine-tuning. This might be due to the small number of 

examples in the new dataset which does not allow for a robust generalization on 

the phenomenon. At the same way, when moving from a random to a controlled 

train/test split, F1 scores decrease of almost 0.10. This is unsurprising as the 

probe has never seen the examples it is tested on. The scores are, however, still 

higher than both the baseline introduced in Section 5.1.2. (DummyUniform, F1 

score: 0.34) that performs equally in each setting, and the F1 score obtained by 

the probe on the control task (F1 score: 0.22). This means that the embeddings 

do carry some information encoding metonymy, but it is either fuzzy, 

incomplete or difficult to retrieve or interpret. 

 

5.5. Results analysis 

This section includes a deeper look into the probing task outcome. By analysing 

the classifier’s predictions, it is possible to study F1 scores for the different 

classes of metonymic examples in the test set. The following results consider 

only the metonymic sentences in the test set, so are measured on how many 

metonymic examples were predicted correctly. As seen in Section 5.2., the test 

set obtained through random split includes examples for all of the 11 target and 
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cue words relationships, while the controlled test set includes examples for 7 

metonymic classes.  

In Table 12, F1 scores for each metonymic relationship in each of the 4 different 

settings are shown. Most of the highest scores are given by non fine-tuned 

representations and a random test set: examples for event-agent (0.66, e.g. 

‘Obviously any baby is a joyous event’), external component (0.66, e.g. ‘The 

club currently has two sails docked at the Newport Yacht Basin’), internal 

component (0.66, e.g. ‘The ground rice is then soaked in coconut until it is soft’), 

origin (0.70, e.g. ‘Do you read other authors?’) and productive (0.71, e.g. ‘He 

was dead drunk and blew his cigar at my face several times’) achieve a score 

greater than 0.65. The same happens for internal component (0.66) in the 

controlled split setting for both fine-tuned and non fine-tuned representations, 

for patient (0.68, e.g. ‘When waiting at a stoplight, why do motorcycles rev their 

throttle?’) on the controlled split test set for non fine-tuned representations and 

for participant (0.67, e.g. ‘The ambulance used a defibrillator on the patient and 

assisted his breathing’) on fine-tuned representations and controlled train/test 

split.  

 

 



72 
 

CW-TW 

relation 

No fine-

tuning, 

random 

split 

No fine-

tuning, 

controlled 

split 

Fine-

tuning, 

random 

split 

Fine-

tuning, 

controlled 

split 

Contingency 0.25 - 0.27 - 

Event-agent 0.66 

 

- 0.56 - 

External 

Component 

0.66 0.30 0.52 0.29 

Internal 

Component 

0.66 0.66 0.36 0.66 

Origin 0.70 

 

- 0.60 - 

Participant 0.60 

 

- 0.67 - 

Patient 0.45 

 

0.68 0.35 0.47 

Attributive 0.47 

 

0.28 0.44 0.57 

Productive 0.71 

 

0.37 0.42 0.50 

Spatial 

 

0.61 0.45 0.45 0.50 

Temporal 0.50 

 

0.20 0.36 0.20 

Average F1 

score per 

experiment 

setting 

0.57  0.42 0.46 0.46 

Table 12: F1 scores for each metonymic class for not fine-tuned and fine-tuned representations and for 

different test sets.  
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The results analysis also displays some low scores, particularly on contingency 

(0.25, 0.27, e.g. ‘This ticket will include your bus’), where the result improves 

with the fine-tuning of the pre-trained model, external component (0.30, 0.29) 

on the controlled test set, and temporal (0.20, 0.36, 0.20, e.g. ‘Hiroshima killed 

thousands of children’) in most settings.  

It is interesting to note how, in general, test examples in the controlled split only 

achieve lower scores when the representations are not fine-tuned, otherwise their 

average score is equal to the one obtained by fine-tuned representations in the 

random split condition. This may suggest that, even though on average the fine-

tuning of the model slightly decreases scores, it provides for some sort of 

robustness that guarantees coherency in the recognition of metonymy even for 

examples the classifier has never seen before.  

Indeed, we are more interested in how the classifier performs on the controlled 

test set, as its ability to properly classify new examples is an indicator of higher-

quality representations with respect to the linguistic phenomenon. Table 13 

focuses specifically on the classifier’s results on the controlled test set, and 

shows how in most cases, 5 out of 7, the score remains equal or increases with 

the fine-tuning of the model.  
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CW-TW relation No fine-tuning, 

controlled split 

Fine-tuning, controlled 

split 

External Component 0.30 0.29 

Internal Component 0.66 0.66 

Patient 

 

0.68 0.47 

Attributive 

 

0.28 0.57 

Productive 

 

0.37 0.50 

Spatial 

 

0.45 0.50 

Temporal 0.20 0.20 

Average F1 score per 

experiment setting 

 0.42 0.46 

Table 13: Focus on scores for controlled test set. 
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This means that, even though at a first sight the sentence embeddings created 

with pre-trained BERT with no fine-tuning seem to be the best ones with respect 

to the linguistic information encoded, fine-tuning the model actually does 

improve the representations by adding some information that allows the probing 

classifier to generalize to some extent and find it in new metonymies. 

Only in two cases the score decreases for fine-tuned representations: it is the 

case of external component, where the variation is minimal (from 0.30 to 0.29) 

and patient (from 0.68 to 0.47).  

It is important to also bear in mind that the dataset is biased towards the ‘literal’ 

class, which could have negative effects on the training of the classifier, and it 

is fairly small, so does not present the optimal size for an efficient fine-tuning. 
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6. Conclusion 

The objective of this thesis is to explore sentence representations obtained 

from pre-trained language models. Having attained remarkable accuracies, 

models such as BERT (Devlin et al., 2019) represent the SoTA for NLP but 

are difficult to interpret, meaning that what linguistic information these 

models are encoding is still in part undiscovered. The issue of low 

interpretability can be tackled through probing methodologies, which aim at 

identifying the presence of some specific information of interest in the vector 

representation. The idea as that a classifier can be trained on pre-trained 

embeddings and asked to classify the inputs according to some linguistic 

property; if the classifier succeeds in the task, we assume that the embedding 

captures the linguistic information being researched.  

The linguistic phenomenon being studied in this work is metonymy, which 

occurs when an entity is referred to with the name of another entity to which 

it is closely related. In spite of the fact that the relationship between the two 

entities can be of different types, most existing datasets for the study of 

metonymy focus on the location one, where a location name is used to refer 

to an institution, an event or a product.  
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For the purposes of this work a new dataset for metonymy of 2016 sentences 

was created which comprises 42 word pairs representing 11 different 

metonymic relationships. The vector representation of each sentence was 

created with BERT (Devlin et al., 2019), a transformer-based pre-trained 

language model. Embeddings were extracted with and without fine-tuning 

the model, BERT-base-uncased. The probe used is a multi-layer perceptron, 

the classifier that displayed the highest selectivity. The train and the test set 

were split at random and in a controlled way: in the first case, 30% of 

sentences from the dataset were selected randomly to make up the test set; 

in the second, 30% of sentences from the dataset were selected so that the 

sentences in the test set are representative of metonymic word pairs that are 

not included in the train set: the idea is to test how robustly pre-trained 

language models capture information related to metonymy by verifying if 

such information is traceable even in examples the classifier has never 

encountered before.  

On the controlled test set, the performances of the classifier show that the 

information encoded in the sentence embeddings allows for better 

generalization on new data when the model is fine-tuned. However, the 

average F1 score is 0.46. While still being a higher score than the ones 

achieved by both the baseline and by the probe trained on a control task, it 
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is not an excellent result. This might mean that some linguistic information 

related to metonymy is encoded in the sentence embeddings, but it is either 

hazy, noisy, incomplete or difficult to retrieve.  

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

7. Future Work 

The research on how metonymy is captured by pre-trained language models has 

still large areas available for exploration. The models, the input, the dataset and 

the test set can all be exploited in many and diverse ways.  

Firstly, other SoTA pre-trained models could be probed for metonymy. The 

input could be manipulated to place emphasis on the metonymic word, for 

example by concatenating the target word or the potentially metonymic word to 

the sentence in which it occurs, or some information on its position. 

The dataset allows for the greatest margin of improvement, especially on size 

and representation. Indeed, the number of sentences could be increased and the 

two classes balanced in order to reduce bias, respectively improving the quality 

of the fine-tuning of pre-trained models and training of the classifier. 

Furthermore, examples for a higher number of metonymic word pairs could be 

included to make the dataset even more representative of the distribution of 

metonymy in natural language.  

In the current controlled test set the focus was placed on word pairs rather than 

relationships, so the test set is comprised of word pairs never seen in the training 

phase that were selected alphabetically, not according to the relationship they 

are representative of. Indeed, only 7 of the 11 metonymic relationships are 
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included in the current controlled split. Therefore, manipulating the training and 

test set so that the test set contains examples for metonymic word pairs for all 

relationships could also be an interesting experiment.  
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Appendix A 

For each word pair in the dataset, a metonymic and a literal sentence are shown. 

Word pair Metonymic example Literal example 

fare 

bus 

This ticket will include your 

bus. 

 

So Margot got off the bus. 

appointment 

doctor 

Close to 1 in 5 Americans 

have either considered 

skipping or actually skipped 

the doctor. 

She went immediately to the 

doctor who had signed the 

death certificate. 

birth 

baby 

The affair with Karen 

continued after the baby. 

She told me she was 

pregnant and asked if I 

would baptise the baby. 

boat 

sail 

Their 36 foot sail hit rough 

waters, losing power and the 

ability to steer. 

Everyone goes out on longer 

boards with the biggest sails 

they can handle. 

car 

door 

The suspect drove away in a 

silver four door. 

As I opened the door, a 

familiar tall figure, swinging 

a stick, strode past. 
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car 

wheel 

Perhaps I just need to get 

used to driving a rear wheel. 

 

Now there were more 

footsteps and the crunch of 

car wheels on gravel. 

door 

barn 

She heaved the barn open 

and disappeared in the 

gloom inside. 

An endless walk it seemed to 

Gabriel, watching through 

the slatted door of the barn. 

guitar 

string 

It opens with his wistful, 

melancholy picking on a 12 

string. 

A good stringer will know 

the right string and tension 

for you. 

wool 

sheep 

They spun and wove their 

own garments from their 

undyed sheep. 

Very stupid animals, sheep. 

ink 

pen 

He also walked around in 

public with pen smudged on 

his face. 

Take the pen out of your 

nose dear, thank you! 

milk 

coconut 

Adults drink coconut, mixed 

with vodka, as an aperitif. 

 

They'd have you carrying 

the coconuts on your head. 
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book 

author 

This author that I purchased 

is really good so far. 

 

One of the authors of that 

famous book was James 

Chadwick. 

author 

book 

The book "Purple Cow" 

argues that brands need to 

stand out. 

 

Needless to say, whenever 

he could, he read the books 

in the original French. 

people 

ambulance 

He says he didn't see officers 

but saw the ambulance 

giving first aid. 

Mr Chittenden was rushed 

to the Countess of Chester 

Hospital by ambulance. 

people 

boat 

This buoy was not seen by 

the boats as fog had now 

descended. 

How is he coming, by train 

or boat? 

 

people 

building 

That building was being told 

to evacuate. 

She walked around the 

building, trying to find the 

entrance. 

battery 

car 

I was so glad I had mine 

when my car went flat the 

other day. 

I could visit my sister in 

Weymouth and buy a new 

car with the saved money. 
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car 

battery 

These electric batteries can 

travel a couple of hundred 

kilometres on a single 

charge. 

A battery is connected to the 

anode and cathode via leads 

A and C respectively. 

people 

motorcycle 

Dozens of motorcycles rode 

for their friends who were 

murdered six weeks ago. 

A motorcycle was stolen 

from Turk Street, Alton on 

Wednesday night last week. 

pilot 

airplane 

Airplanes have long used 

checklists before take off to 

ensure safet. 

Andalusia is very easy to 

reach by airplane. 

pilot 

helicopter 

Helicopters flying over the 

glacier also reported cracks 

in the glacier. 

He can fly his helicopter at 

100 kph. 

shoe 

toe 

If you can make it, wear 

work clothes and closed 

toes. 

 

Tentatively, some dipped 

their toes to test the water. 

diaper 

baby 

It can be used as blanket or 

floor cover when changing 

the baby. 

She told me she was 

pregnant and asked if I 

would baptise the baby. 
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officer 

uniform 

Dark uniforms pursued him 

down the narrow alleys. 

 

A man in a blue uniform was 

walking over towards them. 

woman 

beauty 

I know breathtaking 

beauties who pay their 

boyfriend's bills. 

Then we fail to see the 

beauty in a leaf or in the 

clouds. 

chord 

guitar 

Bickert learned basic guitar 

from his older brother. 

 

''I suppose he does know 

how to handle a guitar,'' 

said Miguel casually. 

music 

guitar 

He is a teacher, musician 

and composer of guitar. 

 

''I suppose he does know 

how to handle a guitar,'' 

said Miguel casually. 

music 

harp 

His words will be 

accompanied by the 

traditional Celtic harp. 

She could versify, play the 

harp, ride horseback, and 

sing. 

music 

piano 

As a composer, Haberbier 

was best known for his 

piano. 

 

Business boomed, and 

Clementi sold countless new 

pianos. 
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music  

violin 

The film uses intense violin 

in both its opening and 

closing credits. 

Half the space is taken up by 

a picture of a violin -- ah 

yes, but one with a broken 

string. 

smoke 

cigar 

He exhales a puff of cigar 

and flashes what passes for 

a smile. 

Then he stood and gathered 

his hat, cigar and white 

gloves together in one hand. 

smoke  

cigarette 

Nicotine affects the brain 

within seconds of inhaling a 

cigarette. 

He knew the change would 

be slow, so he took out and 

lit a cigarette while he 

waited. 

sound 

keyboard 

Do you know how I felt when 

I heard your keyboard? 

 

Thurston Moore of Sonic 

Youth also plays keyboard 

on one track. 

beer 

bottle 

Choristers swigged bottles 

and danced. 

 

While you 're going upstairs 

get us a bottle of beer 

please? 

bottle 

beer 

Broken beers and cheap 

wine boxes are scattered 

around them. 

Sometimes they want wine 

or beer with their lunches. 



100 
 

carton 

milk 

In the morning, Dawn 

continues annoying Buffy by 

emptying the milk. 

Ignoring him, she looked 

down to put milk and sugar 

into her cup. 

coffee 

mug 

I drink a couple of mugs in 

the morning and that's it for 

the day. 

She took Zoe's mug and 

poured her fresh coffee. 

game  

ball 

During the day I will be 

playing ball or swimming 

with Gorm. 

Whenever he gets the ball, 

everybody thinks something 

is about to happen. 

milk 

carton 

Play it safe and avoid food 

poisoning by discarding that 

expired carton. 

It is also possible to use a 

large ice-cream carton, cut 

as shown in the drawing. 

mug  

coffee 

My coffee was still warm but 

half empty. 

 

Rachel gave a weak smile 

and lifted up her cup for 

more coffee. 

bomb 

Hiroshima 

Sadako survived Hiroshima 

when she was only two years 

old. 

It's like the little Japanese 

girl they found in the ruins of 

Hiroshima. 
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vacation 

cottage 

Susan was feeling well and 

the family planned a cottage 

on Sparrow Lake for a week. 

The cottage, he told 

Marshall, had been built the 

same time as the farm. 
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